重新构想面向下一代移动设备的天线设计解决方案

Qorvo半导体 2021-12-17 11:46

下一代移动设备的快速创新带来了天线实现方面的重大工程挑战。关键问题在于,由于蜂窝、Wi-Fi、超宽带 (UWB)、毫米波 (mmW) 和 GPS 标准规定了新频段和提出了新要求,使得 5G 手机的射频路径通常为 LTE 手机的两倍多。然而,空间不足限制了增加新天线及/或在多个频段之间共享天线的能力,从而引发了更复杂的问题。工业设计创新(如可折叠或可卷曲屏幕以及使用虚拟控件取代物理按钮)对天线设计和布局带来了明显限制。增加载波功率要求与 OME 系统效率目标和改进(如电池使用寿命)之间的冲突也带来了额外挑战。Qorvo 在帮助企业解决棘手射频问题方面拥有丰富的经验,其重新构想 Qorvo 天线解决方案 (QASR) 可帮助工程师应对空间、设计和性能挑战,以便利用射频架构中的天线功率。




快速发展的移动行业



随着智能手机和可穿戴设备制造商与移动运营商竞相提供更大覆盖范围、更高数据速率、全新的无线通信功能和变革性工业设计,移动行业的创新步伐继续快速前进。


智能手机制造商开始扩大产品系列的 5G 支持,以满足视频流、视频会议、音乐和游戏等数据密集型服务日益增长的需求。因此,用于高端手机的 5G 高带宽 6 GHz 以下频段(n77/n78 和 n79)和更宽毫米波频段 (n257-n261) 如今也开始用于中端和大众市场手机。在增加射频复杂性的同时,5G 不仅需要增加新的蜂窝频段,还需要在更高频段上支持 4x4 MIMO,以实现更快的数据传输速度。


制造商还在手机中增加了更多非蜂窝频段,以提供更快的网络,支持新的定位服务。例如:Wi-Fi 6E/7 将 Wi-Fi 扩展到 6 GHz 频段,并提供超宽的 160-320 MHz 信道,以便为高清流传输、虚拟现实和点对点游戏等应用提供更高的性能,同时缓解 Wi-Fi 频谱广泛使用所造成的拥堵。



最初用于高端手机的 UWB 技术,如今也开始用于中端和大众市场手机。UWB 能够以前所未有的精度(误差在几厘米内),在室内或室外计算距离和位置,并且开始支持全新的定位应用和设备。顾名思义,UWB 使用的信道宽度至少为 500 MHz,频率范围为 3.1-10.6 GHz,目前移动应用主要使用的频率范围为 6-9 GHz。制造商还开始增加新的 GPS L5 和 L2 频段,这为任务关键型应用提供了更高定位精度等各种优势。



与此同时,随着移动运营商寻求优化现有频谱的使用,以提高数据速率,智能手机开始增加越来越多的多蜂窝频段复杂组合。许多运营商开始使用 EN-DC(E-UTRAN 新无线电 — 双连接),这样就可以通过使用 4G 锚频段与 5G 数据频段组合在某些地区更快地部署 5G 数据速率。载波聚合 (CA) 整合了多个分量载波 (CC),以实现更大带宽和更高数据速率。随着组合选项中添加了越来越多的频段,CA 现在也开始变得越来越复杂。5G 定义了数百种最多可达 16 个 CC 的新组合,每种组合的连续带宽可达 100 MHz,总聚合带宽可达 1 GHz 左右。其中包括具有挑战性的两个或多个低频段新聚合,如欧洲或亚洲的 B20 + B28 组合和北美的 B5 + B12、B13 或 B14 组合,它们具有更大范围和更大吞吐量等优势。


制造商还开始采用更高的发射功率,以扩大高频信号的覆盖范围,因为高频信号的传播距离不及低频信号。2 级功率可使天线的发射功率翻倍(达到 26 dB),目前已经广泛使用,而业界目前也开始探索能使功率进一步增加两倍(至 29 dB)的 1.5 级功率。


工业设计创新


由于制造商在寻求新方法来实现产品差异化,并提供令人欣喜的全新消费者体验,智能手机工业设计也开始快速发展。变革性设计包括可卷曲屏幕的手机和可折叠屏幕的翻盖手机。环绕手机边框的屏幕具有前沿的时尚外观,同时尽可能扩大消费者可用的屏幕面积。物理按钮开始被虚拟控件所取代,虚拟控件通常位于手机的下边框或侧边框。此外,制造商还在不断增加用户看重的其他新功能,如更出色的显示屏、更多的摄像头、多种生物识别认证方法、更高质量的扬声器和更大的电池。虽然它们对消费者极具吸引力,但这些功能会占据空间,从而减少射频前端 (RFFE) 可用的空间,而且它们还会对 RFFE 组件和天线的位置带来新的限制。


这些趋势导致了使用蜂窝和/或非蜂窝连接的小型物联网 (IoT) 设备爆炸式增长,包括手表、其他可穿戴设备和小型跟踪设备。在这些设备中,空间至关重要,而将射频内容压缩到微型空间中也非常重要。




天线挑战



连接和工业设计方面的这些创新给致力于下一代智能手机和其他移动设备的工程师带来了各种相互关联的天线挑战。


射频路径翻了两倍多


增加新的蜂窝和非蜂窝频段大大提高了移动设备中射频路径的总数。支持 mmW 频段和 UWB 的典型 5G 手机的射频路径是典型 4G 手机的两倍多。每条射频路径都需要连接至天线,但要将天线的数量翻倍根本不可能。这是因为手机内部可用空间有限:增加天线数量意味着它们必须彼此靠近,从而会降低天线之间的隔离度。这会导致耦合相关问题,从而增加 RFFE 中存在非线性元件的可能性,使接收器的灵敏度降低。



考虑到固定外形尺寸中可实现的天线总数限制,处理射频路径数量增长的逻辑方法就是增加每个天线的带宽,以支持更多频段。然而,这种方法也会带来挑战。天线带宽越宽,损耗往往就越大。它们可能需要更多空间,因为天线的尺寸是由其支持的最低频率决定的。此外,使用单根天线同时发射和接收多个频段会提高混合信号产生非线性杂散发射的风险。解决这些问题并非易事:需要进行仔细分析并采用专门的天线设计技术,同时在 RFFE 中结合适当的滤波和路由解决方案。


超宽带


支持 UWB 需要使用 3 或 4 根相对较大的贴片天线,而这会占用手机内原本就很拥挤的大量空间。因此,制造商开始寻找将其中一些天线组合在一起的方法,以减少所需的整体空间。另一个考量就是,是否将一根天线置于手机的边框,以实现出色的全方位测距性能。


载波聚合和 EN-DC


CA 和 EN-DC 频段组合的快速增加加剧了天线挑战。如今,可实现的聚合包括高、中、低频段的数百种不同组合。既包括每个频率范围内的多频段组合(如低-低或中-中聚合),也包括不同频谱范围内的频段组合(如低-中和低-中-高聚合)。此外,每个 CC 的最大带宽也在增加。4G 将载波带宽限制在 20 MHz,而 5G 则将最大连续带宽增加至 45 MHz(用于 2300 MHz 以下频段),最高可达 100 MHz(用于 2300 MHz 以上频段)。


因为天线总数有限,每根天线可能都需要在非常宽的频率范围内 (600 MHz-5000 MHz) 提供高性能宽带发射和接收信号。



低-低聚合带来了一些最具挑战性的天线设计问题。移动手机通常使用位于手机顶部和底部的两根主要天线来支持低频段。这些天线位置最大限度地减少了用户与手机交互会降低性能的可能性,因为消费者通常将手放在手机两侧,而不是顶部和底部。关键问题在于,低-低聚合可能需要使用支持低频段发射的第三根天线。这意味着,制造商需要在手机内找到更多空间来放置这根天线,并确保所选天线位置在所有使用条件下都能够提供足够的性能。


更高 Tx 功率


PC 2 和 PC 1.5 规格中定义的更高功率输出会影响智能手机的电池使用寿命。这也意味着,RFFE 内部的所有后 PA 组件(包括天线调谐器)都需要处理更多功率。这通常意味着需要使用更大的组件,但考虑到空间限制,这成为一大问题。输出功率的增加也意味着 RFFE 组件将生成更高电平的杂散信号,从而需要额外关注如何缓解灵敏度降低和 RSE 问题。


新设计可缩小天线空间

采用可折叠和可卷曲屏幕的新手机设计带来了一系列天线挑战。手机必须能够在不同的物理状态下(卷曲或展开、折叠或打开)运行,这严重限制了天线的潜在位置,并且还可能需要使用不同的天线材料。更大的挑战是,设计的限制可能意味着天线必须置于次优位置,这使其性能更容易受到人类交互的影响。天线接地可能会受影响,从而影响辐射效率。为确保在所有使用条件下的运行效率,需要仔细设计和定位天线。



使用软件定义的虚拟按钮代替机械按钮会带来额外的天线挑战。将这些按钮置于手机底部可最大限度地提高便利性和用户可用的屏幕空间,但这也意味着它们可能会干扰过去放置在此位置的主天线。




谁将率先解决挑战?



正如本文所展示的,下一代移动设备带来了相当多的天线设计和工程问题。那么,谁将率先解决挑战?除了克服极其困难的挑战所带来的当之无愧的自豪感,赢得创新竞赛的团队将在消费者支持之争中具有显著的竞争优势。




QASR 如何提供帮助



重新构想 Qorvo 天线解决方案 (QASR) 在帮助智能手机工程师解决下一代智能手机和其他设备所面临的天线挑战方面独具优势。



Qorvo 致力于投资能够促进创新并支持手机持续发展的技术。然而,创新技术本身不足以解决棘手的射频问题。因此,Qorvo 与移动行业紧密合作,帮助工程师解决每种移动设备面临的独有设计问题。Qorvo 在帮助制造商将创新解决方案融入智能手机和其他设备方面拥有极其丰富的经验,包括:


  • 业界首款天线调谐器,可帮助提高更广泛频段中的天线效率。

  • 了解天线复用器、新路径和标准的组合,以解决和简化新兴的复杂场景。

  • 推动新型定制技术的发展,以满足天线调谐、传输功能和射频路由方面的 5G 需求。


QASR 可帮助您应对空间、设计和性能挑战,以便利用射频架构中的天线功率。



Qorvo半导体 射频领域技术分析与分享, 半导体行业信息交流
评论
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 116浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 69浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 222浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 92浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 106浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 58浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 141浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 119浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 61浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 202浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 164浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦