手把手教你用HFSS设计天线

5G通信射频有源无源 2021-12-17 00:00


天线基础

天线的任务是将导行波变换为向空间定向辐射的电磁波,或将在空间传播的电磁波变为微波设备中的导行波,因此天线有两个基本作用:


一个是有效地辐射或接收电磁波, 另一个是把无线电波能量转换为导行波能量。

天线是发射和接收电磁波的一个重要的无线电设备。


天线辐射的原理:当导线上有交变电流通过时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。


若两条导线距离很近,电场被束缚在两条导线之间,那么辐射很微弱。


若将两条导线张开,电场就散播在周围的空间内,那么辐射增强。


当导线的长度L远小于波长λ时,辐射很微弱;当导线的长度L增大到可与波长λ相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。


辐射的基本单元有电基本振子和磁基本振子。


HFSS天线设计流程概述


1
设置求解类型


共有三种求解类型,分别是模式驱动求解(Driven Modal)、终端驱动求解(Driven Terminal)和本征求解(Eigenmode)。


使用HFSS进行天线设计时,可以选择模式驱动求解类型(Driven Modal)或者终端驱动求解类型(Driven Terminal)。


模式驱动求解类型是根据导波模式的入射和反射功率来计算S参数矩阵的解,终端驱动求解类型是根据传输线终端的电压和电流来计算S参数矩阵的解。


2
创建天线的结构模型


根据天线的初始尺寸和结构,在HFSS模型窗口中创建出天线的HFSS参数化设计模型。另外HFSS也可以直接导入AutoCAD、Pro/E等第三方软件创建的结构模型。


3
设置边界条件【Assign Boundary】


在HFSS中,导体结构一般设定为理想导体边界条件(PrefectE)或者有限导体边界条件。使用HFSS设计天线时,还必须在辐射体的外侧正确设置辐射便捷条件或则理想匹配层(PMI)边界条件,这样HFSS才可以计算天线的远场区。


HFSS中定义了许多种边界条件类型,分别是理想导体边界条件(Perfect E)、理想磁边界条件(Perfect H)、有限导体边界条件(Finite Conductivity)、辐射边界条件(Radiation)、对称边界条件(Symmetry)、阻抗边界条件(Impedance)、集总RLC边界条件(Lumped RLC)、无限地平面(Infinite Ground Plane)、主从边界条件(Master and Slave)、理想匹配层(PML)和分层阻抗边界条件(Layered Impedance)。天线设计中,最常用的边界条件是理想导体边界条件(Perfect E)、有限导体边界条件Finite Conductivity)、辐射边界条件(Radiation)和理想匹配层(PML)。


a. 理想导体边界条件


在HFSS中,任何与背景相关联的物体表面以及材质为理想电导体(Pec)的物体表面都会被自动设置为理想导体边界。这种边界条件的电场矢量(E-Field)垂直于物体表面。


b. 有限导体边界条件


实际天线结构的导体部分通常都是使用良导体,如金属铜。使用有限导体边界,可以实现把一个平面的边界条件设置为金属铜、金属铝等良导体。


c. 辐射边界条件


辐射边界条件也称为吸收边界条件(Absorbing Boundary Condition, ABC),用于模拟开放的有限空间。系统在辐射边界处吸收了电磁波,本质上可以把边界看成是延伸到空间无限远。


在使用HFSS进行天线设计时,必须定义辐射边界条件或者理想匹配层,用以模拟开放的自由空间。在设计中只有定义了辐射边界条件或者辐射匹配层,软件才会自动分析计算天线的远区场。


使用辐射边界条件作为自由空间的近似,这种近似的准确程度取决于波的传播方向和辐射边界表面之间的态度,以及辐射体与边界表面之间的距离。若用θ表示波的传播方向和辐射边界表面的之间的角度,当波的传播方向与辐射边界表面正交,即θ=0°时,电磁能量几乎全部被边界吸收,反射系数最小,此时,仿真计算结果最准确;当波的传播方向与辐射边界表面平行,即θ=90°时,电磁能量几乎全部被辐射边界反射回去,此时仿真计算结果的准确度最差。当辐射边界和偶极子天线之间的距离大于λ/4时,回波损耗S11分析结果基本一致,不再有大的波动。


d. 理想匹配层(PML)


在天线设计中,除了可以使用辐射边界条件来模拟开放的自由空间之外,也可以选择使用理想匹配层来模拟开放的自由空间。


理想匹配层(Perfectly Matched Layers, PMI)是能够完全吸收入射电磁波的假想的各项异性材料边界,其有两种典型的应用,一是用于外场问题中的自由空间截断,二是用于导波问题中的吸收负载。对于自由空间截断的情况,PML表面能够完全吸收入射来的电磁波,其作用类似于辐射边界条件。和辐射边界条件相比,理想匹配层由于能够完全吸收入射的电磁波,零反射,因此计算结果更精确。另外,理想匹配层表面可以距离辐射体更近,差不多1/10个波长即可,而辐射边界条件和辐射体之间的距离一般需要大于1/4个工作波长。


4
设置激励条件


在HFSS中,激励是一种定义在三维物体表面或者二维平面物体上的激励源,这种激励源可以是电磁场、电压源、电流源或者电荷源。


HFSS中定义了多种激励方式,主要有波端口激励(Wave Port)、集总端口激励(Lumped Port)、Floquet端口激励(Floquet Port)、入射波激励(Incident Wave)、电压源激励(Voltage Source)、电流源激励(Current Source)和磁偏置激励(Magnetic Bias)。


天线必须通过传输线或者波导传输信号,天线与传输线或者波导的连接处即为馈电面或者称为激励端口。天线设计中馈电面的激励方式主要有两种,分别是波端口激励(Wave Port)和集总端口激励(Lumped Port)。


其中,如果端口平面与背景相接触,激励方式需要设置为波端口激励;如果端口平面在模型内部,激励方式则需要设置为集总端口激励。


a.波端口激励


与背景接触到的端口平面需要设置为波端口激励。在设置波端口激励是,需要设置积分校准线(模式驱动求解类型)或终端线(终端驱动求解模式)、S参数归一化阻抗值和端口平移距离等信息。


对于模式驱动求解类型,在设置波端口激励方式时,需要设定端口的积分线(Integration Line)。设定积分线的目的有两个,一是确定电场的方向,积分线的箭头指向即为电场的正方向;二是设定端口电压的积分路径,用于计算端口电压等参数。


对于终端驱动求解类型而言,在设置波端口激励方式时需要设定端口的终端线(Terminal Line),通过终端线上的节点电流和电压来计算端口的阻抗和S参数矩阵。


b.集总端口激励


集总端口激励(Lumped Port)类似于传统的波端口激励,与波端口激励不同的是集总端口激励需要设置在物体模型内部,且用户必须设定端口阻抗。集总端口直接在端口处计算S参数,设定的端口阻抗为集总端口上S参数的参考阻抗。集总端口不能进行端口平移操作。


集总端口的设置和波端口类似,需要设置积分线(模式驱动求解类型)或终端线(终端驱动求解类型)以及端口阻抗。与波端口激励不同的是,集总端口边缘没有与导体或其他端口相触的部分,默认边界条件是理想磁边界(Perfect H),因此不存在电场耦合到波端口边缘影响传输线特性的问题。对于 微带线、带状线等半开放类的结构,集总端口平面的大小只需与微带线或带状线的宽度相同即可。



5
设置求解参数


HFSS软件采用自适应网络剖分技术,根据用户设置的误差标准,自动生成精准、有效的网络来分析物体模型的电磁特性。HFSS基本的求解参数包括求解频率、自适应网络剖分的最大迭代次数和收敛误差。如果需要进行扫频分析,还需要设置扫频类型和扫频范围。


a.求解设置


求解频率通常设定为天线的中心工作频率。


b.扫频设置


在天线设计中通常还需要查看天线的频率特性,比如天线的驻波比随频率的变化。此时就需要添加扫频分析项,设置扫频类型和扫频范围。HFSS中总共有三种扫频类型,分别是快速扫频(Fast)、离散扫频(Discrete)、和插值扫频(Interpolating)。其中。天线设计多选择快速扫频或者插值扫频。


6
 运行求解分析


上述操作完成后,即创建好天线模型,正确设置了边界条件、激励方式和求解参数,即可执行求解分析操作命令来运行仿真计算。整个仿真计算由HFSS软件自动完成,不需要用户干预。分析完成后,如果结构不收敛,则需要重新设置求解参数;如果结果收敛,则说明计算结果达到了设定的精度要求。


7
查看求解结果


求解分析完成后,在数据后处理部分可以查看HFSS分析出的天线的各项性能参数,如回波损耗S11、电压驻波比VSWR、输入阻抗、天线方向图、轴比和电流分布等。如果仿真计算的天线性能满足设计要求,那么已经完成了天线的仿真设计,此时可以着手制作、调试实际的天线了。如果仿真计算的天线性能未能达到设计要求,那么还需要使用HFSS的参数扫描分析功能或者优化设计功能,进行参数扫描分析和优化分析。


8
Optimetrics优化设计


Optimetries是集成在HFSS中的设计优化模块,该模块通过自动分析设计参数的变化对求解结果的影响,实现参数扫描分析(Parametric)、优化设计(Optimization)、调谐分析(Tuning)、灵敏度分析(Sensitivity)和统计分析(Statistical)等功能。


如果前面的分析结果未达到设计要求,那么还需要使用Optimetrics模块的参数扫描分析功能和优化设计功能来优化天线的结构尺寸,以找到满足设计要求的天线尺寸。


a.参数扫描分析


参数扫描分析功能用来分析天线的性能随着指定变量的变化而变化的关系,在优化设计前一般使用参数扫描分析功能来确定被优化变量的合理变化区间。使用参数扫描分析功能,首先需要添加一个或则多个扫描变量。


b.优化设计


     优化设计是指HFSS在一定的约束条件下根据待定的优化算法对设计的某些参数进行调整,从所有可能的设计变化中寻找一个满足设计要求的值。在进行优化设计时,首先需要明确设计要求或设计目标,然后用户根据设计要求定义设计变量、创建参数化的初设结构模型(Nominal Design)、构造目标含糊,最后指定优化算法进行优化。


Optimizer下拉列表框用于优化算法,其下拉列表中共有5种优化算法可供选择,分别是非线性顺序编程算法(Sequential Nonlinear Programming,SNLP)、混合整数非线性顺序编程算法(Sequential Mixed-Integer Nonlinear Programming,SMINLP)、拟牛顿法(Quasi Newton)、模式搜索法(Pattern Search)和遗传算法(Genetic Algorithm)。在多数情况下,建议用户选择拟牛顿法或者SNLP优化算法。



☆ END ☆

精彩回顾

  • 腔体滤波器技术提升解决方案
  • 腔体滤波器设计之----自动单腔频率温飘
  • 秒仿糖葫芦串形低通
  • 秒仿糖葫芦型低通后续之----低通优化
  • TE01模介质滤波器滤波器
  • 无源互调浅析
  • 如何选择谐振杆的尺寸使功率容量达到最佳
  • 金属介质混合+零腔案例
  • 三模并联耦合介质波导滤波器仿真实例
  • 同轴高低阻抗型低通的公差影响几何?
  • Coupfil对高阶强零点生成的结果偶会出错
  • 陶瓷滤波器的各项制备工序讲解_简介篇
  • (干货)陶瓷滤波器讲解----材料篇
  • (干货)陶瓷滤波器讲解----材料制备篇
  • 细而全的5G产业链详解
  • 陶瓷滤波器讲解----陶瓷材料检测篇
  • BAW,SAW和FBAR滤波器剖析
  • LTCC、IPD、SAW、BAW、FBAR滤波器入门以及应用场景分析

欢迎加入滤波器、多工器、功分耦合器、连接器、天线等无源器件的大家庭

长按扫码可关注

本团队提供可信可靠的滤波器相关产品各种定制化服务,敬请咨询微信号18681587206

点"在看"点个赞,才算真的看完呦

5G通信射频有源无源 5G通信,微波射频器件,TR组件,有源组件,无源器件,滤波器,双工器,合路器,同轴腔体,LC滤波器,高通带阻,功分耦合,环形器,隔离器,功放PA,低噪放LNA,同轴开关,线缆组件,转接器,连接器,毫米波器件以及设备,波导
评论 (0)
  • 晶振在使用过程中可能会受到污染,导致性能下降。可是污染物是怎么进入晶振内部的?如何检测晶振内部污染物?我可不可以使用超声波清洗?今天KOAN凯擎小妹将逐一解答。1. 污染物来源a. 制造过程:生产环境不洁净或封装密封不严,可能导致灰尘和杂质进入晶振。b. 使用环境:高湿度、温度变化、化学物质和机械应力可能导致污染物渗入。c. 储存不当:不良的储存环境和不合适的包装材料可能引发化学物质迁移。建议储存湿度维持相对湿度在30%至75%的范围内,有助于避免湿度对晶振的不利影响。避免雨淋或阳光直射。d.
    koan-xtal 2025-04-28 06:11 89浏览
  •     今天,纯电动汽车大跃进牵引着对汽车电气低压的需求,新需求是48V。车要更轻,料要堆满。车身电子系统(电子座舱)从分布改成集中(域控),电气上就是要把“比12V系统更多的能量,送到比12V系统数量更少的ECU去”,所以,电源必须提高电压,缩小线径。另一方面,用比传统12V,24V更高的电压,有利于让电感类元件(螺线管,电机)用更细的铜线,缩小体积去替代传统机械,扩大整车电气化的边界。在电缆、认证行业60V标准之下,48V是一个合理的电压。有关汽车电气低压,另见协议标准第
    电子知识打边炉 2025-04-27 16:24 160浏览
  • 探针台作为半导体制造与测试的核心设备,通过精密定位与多环境适配能力,支撑芯片研发、生产及验证全流程。以下是其关键应用领域与技术特性:一、核心功能支撑1.‌电性能测试与分析‌l 在晶圆切割前,探针台直接接触芯片电极,测量阈值电压、漏电流、跨导等200余项参数,用于评估良品率及优化工艺设计。l 支持单晶体管I-V曲线测量,定位栅极氧化层厚度偏差(精度达0.2nm),为器件性能分析提供数据基础。2.‌纳米级定位与测量‌l 定位精度达±0.1μm,满足5nm及以下制程芯片的
    锦正茂科技 2025-04-27 13:09 138浏览
  • 2025年全球人形机器人产业迎来爆发式增长,政策与资本双重推力下,谷歌旗下波士顿动力、比亚迪等跨国企业与本土龙头争相入局,产业基金与风险投资持续加码。仅2025年上半年,中国机器人领域就完成42笔战略融资,累计金额突破45亿元,沪深两市机器人指数年内涨幅达68%,印证了资本市场对智能终端革命的强烈预期。值得关注的是,国家发展改革委联合工信部发布《人形机器人创新发展行动计划》,明确将仿生感知系统、AI决策中枢等十大核心技术纳入"十四五"国家重大专项,并设立500亿元产业引导基金。技术突破方面,本土
    电子资讯报 2025-04-27 17:08 217浏览
  • 探针台作为高精度测试设备,在光电行业的关键器件研发、性能测试及量产质量控制中发挥核心作用,主要涵盖以下应用场景与技术特性:一、光电元件性能测试1.‌光电器件基础参数测量‌l 用于LED、光电探测器、激光器等元件的电流-电压(I-V)特性、光功率、响应速度等参数测试,支撑光通信、显示技术的器件选型与性能优化。l 支持高频信号测试(如40GHz以上射频参数),满足高速光调制器、光子集成电路(PIC)的带宽与信号完整性验证需求。2.‌光响应特性分析‌l 通过电光转换效率测
    锦正茂科技 2025-04-27 13:19 112浏览
  • 一、智能家居的痛点与创新机遇随着城市化进程加速,现代家庭正面临两大核心挑战:情感陪伴缺失:超60%的双职工家庭存在“亲子陪伴真空期”,儿童独自居家场景增加;操作复杂度攀升:智能设备功能迭代导致用户学习成本陡增,超40%用户因操作困难放弃高阶功能。而WTR096-16S录音语音芯片方案,通过“语音交互+智能录音”双核驱动,不仅解决设备易用性问题,更构建起家庭成员间的全天候情感纽带。二、WTR096-16S方案的核心技术突破1. 高保真语音交互系统动态情绪语音库:支持8种语气模板(温柔提醒/紧急告警
    广州唯创电子 2025-04-28 09:24 106浏览
  • 速卖通,作为阿里巴巴集团旗下的跨境电商平台,于2010年横空出世,彼时正值全球电商市场蓬勃发展,互联网的普及让跨境购物的需求日益增长,速卖通顺势而为,迅速吸引了全球目光。它以“让天下没有难做的生意”为使命,致力于打破国界限制,搭建起中国商家与全球消费者之间的桥梁。在其发展的黄金时期,速卖通取得的成绩令人瞩目。在欧洲市场,速卖通一度成为第一大电商平台。根据第三方机构《欧洲跨境商务》的评选,速卖通凭借出色的服务和消费者口碑,在“欧洲十大跨境电商平台”中脱颖而出,力压来自美国的亚马逊和eBay等电商巨
    用户1742991715177 2025-04-26 20:23 162浏览
  •   无人机部件仿真与模型验证平台系统解析   北京华盛恒辉无人机部件仿真与模型验证平台系统是无人机研发的核心工具,通过多元功能、创新架构和广泛应用,推动无人机技术发展。以下从核心功能、技术架构、应用场景、优势及发展趋势展开解析。   应用案例   目前,已有多个无人机部件仿真与模型验证平台在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机部件仿真与模型验证平台。这些成功案例为无人机部件仿真与模型验证平台的推广和应用提供了有力支持。   一、核心功能   三维建模与可视化
    华盛恒辉l58ll334744 2025-04-26 16:39 236浏览
  • 在电子电路设计和调试中,晶振为电路提供稳定的时钟信号。我们可能会遇到晶振有电压,但不起振,从而导致整个电路无法正常工作的情况。今天凯擎小妹聊一下可能的原因和解决方案。1. 误区解析在硬件调试中,许多工程师在测量晶振时发现两端都有电压,例如1.6V,但没有明显的压差,第一反应可能是怀疑短路。晶振电路本质上是一个交流振荡电路。当晶振未起振时,两端会静止在一个中间电位,通常接近电源电压的一半。万用表测得的是稳定的直流电压,因此没有压差。这种情况一般是:晶振没起振,并不是短路。2. 如何判断真
    koan-xtal 2025-04-28 05:09 106浏览
  •  集成电路封装测试是确保芯片性能与可靠性的核心环节,主要包括‌晶圆级测试(CP测试)‌和‌封装后测试(FT测试)‌两大阶段,流程如下:一、晶圆级测试(CP测试)1.‌测试目的‌:在晶圆切割前筛选出功能缺陷或性能不达标的晶粒(Die),避免后续封装环节的资源浪费,显著降低制造成本。2.‌核心设备与操作‌l ‌探针台(Prober)‌:通过高精度移动平台将探针与晶粒的Pad jing准接触,实现电气连接。l ‌ATE测试机‌:提供测试电源、信号输入及功能向量,接收晶粒反
    锦正茂科技 2025-04-27 13:37 161浏览
  •   北京华盛恒辉电磁环境适应性测试系统是针对复杂电磁环境进行仿真、测试与评估的关键设备,以下从系统功能、技术架构、应用场景、核心优势、发展趋势五个维度展开全面解析:   应用案例   目前,已有多个电磁环境适应性测试系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁环境适应性测试系统。这些成功案例为电磁环境适应性测试系统的推广和应用提供了有力支持。   一、系统功能   复杂电磁环境构建   全生命周期测试能力   实时监测与反馈   二、技术架构   模块化设
    华盛恒辉l58ll334744 2025-04-26 17:21 195浏览
我要评论
0
5
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦