从华为5G智能手机,看中国集成电路的国产化进程

电子森林 2019-11-27 07:55

这是今年9月发布在网站http://credibletarget.net/上的一篇文章,由化名“优述”、常住北京的老外看中国集成电路的崛起。基于Tech Insights拆解的最新5G智能手机Mate 50 Pro 5G并分析了基站的半导体组成成分。


在手机端,除个别模拟器件(华为的MIPI和Cirrus的放大器)/射频前端器件(高通)之外,基本上没有其它美国货了。一些严重依赖美国半导体企业的器件,也都转向了日本/韩国的供应商。


更多的信息可以阅读英文原文:


What doesn’t kill you, makes you stronger. Mild strokes aside, this is often true. Certainly, Huawei seems to be doing more than OK. And more broadly, looking across China’s semi sector, things are booming. That’s what the Q3 results suggest at least. Far from slowing Huawei down or making Beijing reconsider its “Manufacturing 2025” ambitions, the results reek of US firms being designed out of the supply chain, an accelerated roll-out 5G plan and domestic tech advancement.

Some will no doubt say that “Yeah, we knew China wanted to develop its own semi industry, so what’s the rumpus?” This observation misses the mark. Before private firms were happy with the Americans, and state firms would just tell their bosses they were no good alternatives. But now orders are being pushed towards domestic rivals, even where they are not very good, providing them with revenues today, and confidence about future revenues, with which to fund R&D.


Let’s start with Huawei and their smartphone business.


Its new 5G phone, the Mate 30 Pro 5G, started shipping this month. Thanks to a teardown by Tech Insights here, we can look inside! There’s not much American left.

There’s a couple of MIPI switches from Texas Instruments (TI) and a noise amplifier from Cirrus, both analog components (analog silicon is really hard, harder than digital). There’s also a Front-end module from Qualcomm.

But most of what you see inside is non-US:

  • Murata, a Japanese firm, seems to be Huawei’s chosen partner for filters and the modules you put them in, pushing out Skyworks and Quorvo.

  • The DRAM memory inside the Kirin 990 SoC module is courtesy of Korea’s SK Hynix (not Micron).

  • And look at all the HiSilicon inside: power management and power amplifiers (MB/HB is hard!), RF transceivers, and LNA/RF switches.


And the substitution success is even clearer when you look at Huawei’s other recent, 4G models. It even seems to be figured out how to do its own front-end modules with Murata, which is really not easy.


Meanwhile, Huawei’s domestic 5G infrastructure build-out seems to be going OK too.


For the base stations which supply the radio access network (RAN) in each location, you need a baseband unit (BBU) and 3+ active antenna units (AAU).


The baseband unit A BBU has multiple chips in it: an FPGA, which is the brain (and unlike a CPU is configurable, so you can adjust it as standards change), a DSP (digital signal processor), a modem, switches etc. Huawei was using Xilinx FPGAs, but now it has its own ASIC. This may be a little tricky as the 5G standards are not yet tied down but given Huawei is playing a large role in setting those standards, perhaps their ASIC is designed with knowledge of what’s likely coming.


Huawei has its own 5G transceiver chips, taped out at TSMC on 65nm, but they are low density only (8T8R), which means they can’t handle fast data. They’ve no doubt been building up inventory of the higher density chips too (from, for example, Lumentum). As such, like the ASIC, we’re probably looking at ‘good enough’ tech, rather than the best. If that is indeed the case, and putting aside security concerns, then Huawei’s build-out internationally may be handicapped as other telco operators, particularly in OECD markets, will likely want the best kit.


The active antenna units The AAU comprises the antennae and remote radio unit (RRU). The RRU is for frequency modulation. It needs RF PA, filters and converters. Again, the phones Huawei is now producing suggest it has developed its own in-house analogy chip capability much faster than most people thought (analog chips are much harder to build than digital ones). So maybe it is now able to build its own AAU too.


It is now clear that Huawei and their seniors made a critical strategic decision when the Entity Listing happened: They doubled down on 5G - and told the supply chain to get ready. And it looks so far that the bet is paying off. TSMC, the Taiwan foundry, which manufactures HiSilicon’s chips, announced a 40% increase in capex plans for 2020-21. Put that down to China Inc. telling them what they wanted to buy over the next two year. (And given Beijing’s worries over Washington asking TSMC to not work for Huawei, making sure their financial future was in Huawei’s hands is clever.)

Across the street, analysts have been raising their 5G smartphone sales estimates for 2020-21 by great leaps. One boutique research firm has Huawei at 75mn units in 2020, 290mn in total. This is big. Apple is only releasing its 5G smartphone in H2. Huawei will only gain more market share from them in China in 2020.


Now, it just comes down to the Chinese consumer to do his/her bit and buy 5G phones. So far, Beijing has refused to say whether it will offer any subsidies for smartphone buyers; maybe they’re waiting to see how sales go.


And in other news… It is not just the smartphone space which has gone full-blown crazy for independence. You can see the same across the semi space.


SMIC, China’s leading foundry, seems to be doing fine: it has announced it is starting scale production at 14nm using its FinFET technology, a first for China. Here’s a good overview, in Chinese. SMIC has always been the also-ran, falling further and further behind TSMC over the years, especially at 28nm. But there does seem to be a greater confidence there these days. They’re still no threat to TSMC and probably won’t make much on 14nm, but that’s not the point. Even our old friends Huahong (my piece here) is making progress, saying it’s aiming for 14nm FinFET production in 2020.


NAURA, China’s only viable semi-conductor equipment company, lodged a nice 20 orders for equipment in Q4, some RMB 500mn worth. Among the clients were YMTC out in Wuhan, which is now building out for mass production of its 64-layer 256Gb NAND chip. YMTC says its ready to produce NAND at scale next year too. It’ll be behind Micron, SK Hynix and Samsung in technology (they’ll be at 128-layer), of course, but they’l no doubt find buyers at the low-end (things like firms who put USB stick together). Not much money to be made, but, hey, that’s not the point in the short-term, as I explained in this piece on China’s disruptive industrial policy here).


电子森林 讲述电子工程师需要掌握的重要技能: PCB设计、FPGA应用、模拟信号链路、电源管理等等;不断刷新的行业新技术 - 树莓派、ESP32、Arduino等开源系统;随时代演进的热点应用 - 物联网、无人驾驶、人工智能....
评论
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 197浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 228浏览
  • 书接上回:【2022年终总结】阳光总在风雨后,启航2023-面包板社区  https://mbb.eet-china.com/blog/468701-438244.html 总结2019,松山湖有个欧洲小镇-面包板社区  https://mbb.eet-china.com/blog/468701-413397.html        2025年该是总结下2024年的喜怒哀乐,有个好的开始,才能更好的面对2025年即将
    liweicheng 2025-01-24 23:18 148浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 1037浏览
  • 项目展示①正面、反面②左侧、右侧项目源码:https://mbb.eet-china.com/download/316656.html前言为什么想到要做这个小玩意呢,作为一个死宅,懒得看手机,但又想要抬头就能看见时间和天气信息,于是就做个这么个小东西,放在示波器上面正好(示波器外壳有个小槽,刚好可以卡住)功能主要有,获取国家气象局的天气信息,还有实时的温湿度,主控采用ESP32,所以后续还可以开放更多奇奇怪怪的功能,比如油价信息、股票信息之类的,反正能联网可操作性就大多了原理图、PCB、面板设计
    小恶魔owo 2025-01-25 22:09 175浏览
  • 随着AI大模型训练和推理对计算能力的需求呈指数级增长,AI数据中心的网络带宽需求大幅提升,推动了高速光模块的发展。光模块作为数据中心和高性能计算系统中的关键器件,主要用于提供高速和大容量的数据传输服务。 光模块提升带宽的方法有两种:1)提高每个通道的比特速率,如直接提升波特率,或者保持波特率不变,使用复杂的调制解调方式(如PAM4);2)增加通道数,如提升并行光纤数量,或采用波分复用(CWDM、LWDM)。按照传输模式,光模块可分为并行和波分两种类型,其中并行方案主要应用在中短距传输场景中成本
    hycsystembella 2025-01-25 17:24 126浏览
  • 飞凌嵌入式基于瑞芯微RK3562系列处理器打造的FET3562J-C全国产核心板,是一款专为工业自动化及消费类电子设备设计的产品,凭借其强大的功能和灵活性,自上市以来得到了各行业客户的广泛关注。本文将详细介绍如何启动并测试RK3562J处理器的MCU,通过实际操作步骤,帮助各位工程师朋友更好地了解这款芯片。1、RK3562J处理器概述RK3562J处理器采用了4*Cortex-A53@1.8GHz+Cortex-M0@200MHz架构。其中,4个Cortex-A53核心作为主要核心,负责处理复杂
    飞凌嵌入式 2025-01-24 11:21 168浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 300浏览
  • 前篇文章中『服务器散热效能不佳有解吗?』提到气冷式的服务器其散热效能对于系统稳定度是非常重要的关键因素,同时也说明了百佳泰对于散热效能能提供的协助与服务。本篇将为您延伸说明我们如何进行评估,同时也会举例在测试过程中发现的问题及改善后的数据。AI服务器的散热架构三大重点:GPU导风罩:尝试不同的GPU导风罩架构,用以集中服务器进风量,加强对GPU的降温效果。GPU托盘:改动GPU托盘架构,验证出风面积大小对GPU散热的影想程度。CPU导风罩:尝试封闭CPU导风罩间隙,集中风流,验证CPU降温效果。
    百佳泰测试实验室 2025-01-24 16:58 67浏览
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 170浏览
  • 不让汽车专美于前,近年来哈雷(Harley-Davidson)和本田(Honda)等大型重型机车大厂的旗下车款皆已陆续配备车载娱乐系统与语音助理,在路上也有越来越多的普通机车车主开始使用安全帽麦克风,在骑车时透过蓝牙连线执行语音搜寻地点导航、音乐播放控制或免持拨打接听电话等各种「机车语音助理」功能。客户背景与面临的挑战以本次分享的客户个案为例,该客户是一个跨国车用语音软件供货商,过往是与车厂合作开发前装车机为主,且有着多年的「汽车语音助理」产品经验。由于客户这次是首度跨足「机车语音助理」产品,因
    百佳泰测试实验室 2025-01-24 17:00 86浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦