函数调用时栈是如何变化的?

嵌入式客栈 2021-12-16 08:00

大家都知道函数调用是通过栈来实现的,而且知道在栈中存放着该函数的局部变量。但是对于栈的实现细节可能不一定清楚。本文将介绍一下在Linux平台下函数栈是如何实现的。

栈帧的结构

函数在调用的时候都是在栈空间上开辟一段空间以供函数使用,所以,我们先来了解一下通用栈帧的结构。

如图所示,栈是由高地址向地地址的方向生长的,而且栈有其栈顶和栈底,入栈出栈的地方就叫做栈顶。

在x86系统的CPU中,rsp是栈指针寄存器,这个寄存器中存储着栈顶的地址。rbp中存储着栈底的地址。函数栈空间主要是由这两个寄存器来确定的。

当程序运行时,栈指针rsp可以移动,栈指针和帧指针rbp一次只能存储一个地址,所以,任何时候,这一对指针指向的是同一个函数的栈帧结构。

而帧指针rbp是不移动的,访问栈中的元素可以用-4(%rbp)或者8(%rbp)访问%rbp指针下面或者上面的元素。

在明白了这些之后,下面我们来看一个具体的例子:

#include 

int sum (int a,int b)
{
 int c = a + b;
 return c;
}

int main()
{
 int x = 5,y = 10,z = 0;
 z = sum(x,y);
 printf("%d\r\n",z);
 return 0;
}

反汇编如下,下面我们就对照汇编代码一步一步分析下函数调用过程中栈的变化。

0000000000000000 :
   0: 55                    push   %rbp 
   1: 48 89 e5              mov    %rsp,%rbp
   4: 89 7d ec              mov    %edi,-0x14(%rbp) # 参数传递
   7: 89 75 e8              mov    %esi,-0x18(%rbp) # 参数传递
   a: 8b 55 ec              mov    -0x14(%rbp),%edx
   d: 8b 45 e8              mov    -0x18(%rbp),%eax
  10: 01 d0                 add    %edx,%eax 
  12: 89 45 fc              mov    %eax,-0x4(%rbp) # 局部变量
  15: 8b 45 fc              mov    -0x4(%rbp),%eax # 存储结果
  18: 5d                    pop    %rbp
  19: c3                    retq   

000000000000001a 
:
  1a: 55                    push   %rbp # 保存%rbp。rbp,栈底的地址
  1b: 48 89 e5              mov    %rsp,%rbp # 设置新的栈指针。rsp 栈指针,指向栈顶的地址
  1e: 48 83 ec 10           sub    $0x10,%rsp # 分配 16字节栈空间。%rsp = %rsp-16
  22: c7 45 f4 05 00 00 00  movl   $0x5,-0xc(%rbp) # 赋值
  29: c7 45 f8 0a 00 00 00  movl   $0xa,-0x8(%rbp) # 赋值
  30: c7 45 fc 00 00 00 00  movl   $0x0,-0x4(%rbp) # 赋值
  37: 8b 55 f8              mov    -0x8(%rbp),%edx  
  3a: 8b 45 f4              mov    -0xc(%rbp),%eax 
  3d: 89 d6                 mov    %edx,%esi # 参数传递 ,从右向左
  3f: 89 c7                 mov    %eax,%edi # 参数传递
  41: e8 00 00 00 00        callq  46  # 调用sum
  46: 89 45 fc              mov    %eax,-0x4(%rbp) 
  49: 8b 45 fc              mov    -0x4(%rbp),%eax # 存储计算结果
  4c: 89 c6                 mov    %eax,%esi
  4e: 48 8d 3d 00 00 00 00  lea    0x0(%rip),%rdi        # 55 
  55: b8 00 00 00 00        mov    $0x0,%eax
  5a: e8 00 00 00 00        callq  5f 
  5f: b8 00 00 00 00        mov    $0x0,%eax 
  64: c9                    leaveq 
  65: c3                    retq   

函数调用前

在函数被调用之前,调用者会为调用函数做准备。首先,函数栈上开辟了16字节的空间,存储定义的3个int型变量,建立了main函数的栈。

接着,会给三个变量进行赋值。

以下4行代码是进行参数传递。我们可以看到是函数参数是倒序传入的:先传入第N个参数,再传入第N-1个参数(CDECL约定)。

mov    -0x8(%rbp),%edx  
mov    -0xc(%rbp),%eax 
mov    %edx,%esi # 参数传递 ,从右向左
mov    %eax,%edi # 参数传递

最后,会执行到call指令处,调用sum函数。

callq  46  # 调用sum

CALL指令内部其实还暗含了一个将返回地址(即CALL指令下一条指令的地址)压栈的动作(由硬件完成)。

具体来说,call指令执行时,先把下一条指令的地址入栈,再跳转到对应函数执行的起始处。

函数调用时

进入sum函数后,我们看到函数的前两行:

push   %rbp 
mov    %rsp,%rbp

这两条汇编指令的含义是:首先将rbp寄存器入栈,然后将栈顶指针rsp赋值给rbp。

“mov rbp rsp”这条指令表面上看是用rsp覆盖rbp原来的值,其实不然。

因为给rbp赋值之前,原rbp值已经被压栈(位于栈顶),而新的rbp又恰恰指向栈顶。此时rbp寄存器就已经处于一个非常重要的地位。

该寄存器中存储着栈中的一个地址(原rbp入栈后的栈顶),从该地址为基准,向上(栈底方向)能获取返回地址、参数值,向下(栈顶方向)能获取函数局部变量值,而该地址处又存储着上一层函数调用时的rbp值。

一般而言,%rbp+4处为返回地址,%rbp+8处为第一个参数值(最后一个入栈的参数值,此处假设其占用4字节内存),%rbp-4处为第一个局部变量,%rbp处为上一层rbp值。

由于rbp中的地址处总是“上一层函数调用时的rbp值”,而在每一层函数调用中,都能通过当时的%rbp值“向上(栈底方向)”能获取返回地址、参数值,“向下(栈顶方向)”能获取函数局部变量值。

紧接着执行的四条指令。

mov    %edi,-0x14(%rbp) # 参数传递
mov    %esi,-0x18(%rbp) # 参数传递
mov    -0x14(%rbp),%edx
mov    -0x18(%rbp),%eax
add    %edx,%eax
mov    %eax,-0x4(%rbp)

上述指令通过rbp加偏移量的方式将main传递给sum的两个参数保存在当前栈帧的合适位置,然后又取出来放入寄存器,看着有点儿多此一举,这是因为在编译时未给gcc指定优化级别,而gcc编译程序时,默认不做任何优化,所以看起来比较啰嗦。

需要说明的是,sum的两个参数和返回值都是int,在内存中只占4个字节,而图中每个栈内存单元按8字节地址边界进行了对齐,所以才是下图中这个样子。

再来看紧接着的三条指令。

add    %edx,%eax 
mov    %eax,-0x4(%rbp) # 局部变量
mov    -0x4(%rbp),%eax # 存储结果

上述第一条指令负责执行加法运算并将并将结果存入eax中,第二条指令将eax中的值存入局部变量c所在的内存,第三条指令将局部变量c的值读取到eax中,可以看到,局部变量c被编译器安排到了%rbp -0x4这个地址对应的内存中。

接下来继续执行

pop %rbp
retq

这两条指令的功能相当于下面的指令:

mov %rbp,%rsp
pop %rbp
pop %rip

即在操作上面两条指令的时候,首先把rsp赋值,它的值是存储调用函数rbp的值的地址,所以可以通过出栈操作,来给rbp赋值,来找回调用函数的rbp。

通过栈的结构,可以知道,rbp上面就是调用函数调用被调用函数的下一条指令的执行地址,所以需要赋值给rip,来找回调用函数里的指令执行地址。

整个函数跳转回main的时候,他的rsp,rbp都会变回原来的main函数的栈指针,C语言程序就是用这种方式来确保函数的调用之后,还能继续执行原来的程序。

函数调用后

函数最后返回的时候,继续执行下面这条指令:

mov    %eax,-0x4(%rbp)  # 把sum函数的返回值赋给变量z

上述指令将eax中的结果放入rbp  -0x4所指的内存中,这里也是main的局部变量z所在位置。

再往后的指令如下:

mov    %eax,-0x4(%rbp) 
mov    -0x4(%rbp),%eax # 计算结果
mov    %eax,%esi
mov    %eax,%esi
lea    0x0(%rip),%rdi  
mov    $0x0,%eax
callq  5f 

上述指令首先为printf准备参数,然后调用printf,具体过程和调用sum的过程相似,让CPU直接执行到main倒数第二条leave指令处。

mov    $0x0,%eax 

指令作用是将main返回值0放到寄存器eax,等main返回后调用main可拿到这个值。

执行leave指令相当于执行如下两条指令:

mov %rbp, %rsp
pop %rbp

leave指令首先将rbp的值复制给rsp,rsp就指向rbp所指的栈单元。之后leave指令将该栈单元的值pop给rbp,如此,rsp和rbp就恢复成刚进入main时的状态。

—— The End —

推荐阅读  点击蓝色字体即可跳转
☞ 使用FreeRTOS要好好理解任务状态机
☞ 手把手教你在STM32F4上跑freeRTOS
 图解FreeRTOS原理系列之任务管理器基本框架
 傅里叶变换、拉普拉斯变换、Z 变换的联系是什么?为什么要变换

欢迎转发、留言、点赞、分享给您的朋友,感谢您的支持!

嵌入式客栈 欢迎关注嵌入式客栈,主要分享嵌入式Linux系统构建、嵌入式linux驱动开发、单片机技术、FPGA开发、信号处理、工业通讯等技术主题。欢迎关注,一起交流,一起进步!
评论 (1)
游客_130542021-12-16 08:16
你这截图是怎么截的,怎么每个都刚好那么宽?
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 181浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 211浏览
  • 晶振在使用过程中可能会受到污染,导致性能下降。可是污染物是怎么进入晶振内部的?如何检测晶振内部污染物?我可不可以使用超声波清洗?今天KOAN凯擎小妹将逐一解答。1. 污染物来源a. 制造过程:生产环境不洁净或封装密封不严,可能导致灰尘和杂质进入晶振。b. 使用环境:高湿度、温度变化、化学物质和机械应力可能导致污染物渗入。c. 储存不当:不良的储存环境和不合适的包装材料可能引发化学物质迁移。建议储存湿度维持相对湿度在30%至75%的范围内,有助于避免湿度对晶振的不利影响。避免雨淋或阳光直射。d.
    koan-xtal 2025-04-28 06:11 143浏览
  • 一、智能家居的痛点与创新机遇随着城市化进程加速,现代家庭正面临两大核心挑战:情感陪伴缺失:超60%的双职工家庭存在“亲子陪伴真空期”,儿童独自居家场景增加;操作复杂度攀升:智能设备功能迭代导致用户学习成本陡增,超40%用户因操作困难放弃高阶功能。而WTR096-16S录音语音芯片方案,通过“语音交互+智能录音”双核驱动,不仅解决设备易用性问题,更构建起家庭成员间的全天候情感纽带。二、WTR096-16S方案的核心技术突破1. 高保真语音交互系统动态情绪语音库:支持8种语气模板(温柔提醒/紧急告警
    广州唯创电子 2025-04-28 09:24 188浏览
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 216浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 182浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 219浏览
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 213浏览
  •  探针台的维护直接影响其测试精度与使用寿命,需结合日常清洁、环境控制、定期校准等多维度操作,具体方法如下:一、日常清洁与保养1.‌表面清洁‌l 使用无尘布或软布擦拭探针台表面,避免残留清洁剂或硬物划伤精密部件。l 探针头清洁需用非腐蚀性溶剂(如异丙醇)擦拭,检查是否弯曲或损坏。2.‌光部件维护‌l 镜头、观察窗等光学部件用镜头纸蘸取wu水jiu精从中心向外轻擦,操作时远离火源并保持通风。3.‌内部防尘‌l 使用后及时吹扫灰尘,防止污染物进入机械滑
    锦正茂科技 2025-04-28 11:45 108浏览
  • 文/郭楚妤编辑/cc孙聪颖‍越来越多的企业开始蚕食动力电池市场,行业“去宁王化”态势逐渐明显。随着这种趋势的加强,打开新的市场对于宁德时代而言至关重要。“我们不希望被定义为电池的制造者,而是希望把自己称作新能源产业的开拓者。”4月21日,在宁德时代举行的“超级科技日”发布会上,宁德时代掌门人曾毓群如是说。随着宁德时代核心新品骁遥双核电池的发布,其搭载的“电电增程”技术也走进业界视野。除此之外,经过近3年试水,宁德时代在换电业务上重资加码。曾毓群认为换电是一个重资产、高投入、长周期的产业,涉及的利
    华尔街科技眼 2025-04-28 21:55 157浏览
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 247浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 204浏览
  • 4月22日下午,备受瞩目的飞凌嵌入式「2025嵌入式及边缘AI技术论坛」在深圳深铁皇冠假日酒店盛大举行,此次活动邀请到了200余位嵌入式技术领域的技术专家、企业代表和工程师用户,共享嵌入式及边缘AI技术的盛宴!1、精彩纷呈的展区产品及方案展区是本场活动的第一场重头戏,从硬件产品到软件系统,从企业级应用到高校教学应用,都吸引了现场来宾的驻足观看和交流讨论。全产品矩阵展区展示了飞凌嵌入式丰富的产品线,从嵌入式板卡到工控机,从进口芯片平台到全国产平台,无不体现出飞凌嵌入式在嵌入式主控设备研发设计方面的
    飞凌嵌入式 2025-04-28 14:43 152浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 301浏览
我要评论
1
2
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦