如何设计一个高精度模数转换ADC?

TechSugar 2021-12-14 08:00
有一段时间没说过模拟芯片了,今天我们就聊一聊模拟芯片,特别是模数转换芯片ADC。

1. 什么是ADC

从本质上来看,模拟芯片和数字芯片最主要的区别,就是处理信号的不同。顾名思义,模拟芯片处理的是模拟信号,而数字芯片处理的是数字信号。模拟信号是随着时间连续变化的,比如温度、湿度、声音、速度等等。它们最大的特点是,在一定的时间范围内有无数个不同的取值。

相比之下,数字信号就是一堆不连续的数值,比如计算机里用的二进制0101。由于晶体管有开和关两种状态,所以可以很自然的表示0和1 两种数值。晶体管没办法做到类似于10%开、或者31.5%关这样的状态,所以它是一个数字信号。

为了连接模拟和数字这两个相互独立的领域,就需要使用两种芯片作为桥梁,一个是模数转换芯片ADC、另外一个是数模转换芯片DAC。

顾名思义,模数转换芯片ADC就是用来把模拟信号转换成数字信号,而模数转换DAC就是正好反过来,把数字信号转换成模拟信号。不过在实际应用里,ADC的占比更高。有数据显示,在模拟数字相互转换的应用里,有80%是ADC。特别是在数字化社会,几乎所有东西都被数字化了,方便后续的处理、传输和存储。

很多朋友可能觉得,不就是模拟信号转成数字信号嘛,听起来好像没什么难度。实际上,ADC芯片是模拟芯片中难度最高的,甚至可能没有之一。在半导体和集成电路领域的顶级会议ISSCC、也就是国际固态电路会议上,就有相当一部分文章是介绍ADC设计。

2.  如何设计和优化ADC

那么,究竟模数转换ADC是怎么实现的呢?简单来说需要采样(Sampling)、量化(Quantization)、编码(Encoding)这么几个过程。也就是说,我们首先需要对这个信号进行采样,每隔一段时间记录一下信号当时的电压值。采集到的数值会经过量化,转换成相应的数字信号值,最后再通过某种编码表示出来,比如补码、格雷码等等。

ADC有很多个参数指标,其中有两个常见的参数,一个是ADC的采样速率(sampling rate)或者叫数据速率(data rate),另一个是分辨率(resolution)。采样速率很好理解,就是单位时间内能做多少次采样,采样点数越多,就越能还原初始信号的样子。

分辨率被定义为输入信号值的最小变化,这个最小数值变化会改变ADC数字输出值的一个码值。在ADC有同样输入范围的情况下,分辨率越高,一个码值所代表的最小变化就越小。如果我们的ADC有3位,那么就可以把整个电压范围分成2^3=8份。如果电压变化范围是0-10V,那么每份就代表1.25V。也就是说,如果电压的变化小于这个值,那么ADC就没办法捕捉到这个细小的变化。需要注意的重要一点是,ADC的分辨率(resolution)和ADC的精度(accuracy)是两个完全不同的概念。

ADC的具体实现形式有很多种,常见的包括逐次逼近型ADC(SAR),还有一种叫Delta-Sigma ADC。比如常见的逐次逼近型ADC在电路里主要集成了一个电压比较器、一个寄存器、还有一个DAC,以及一些控制电路。它的本质就是用二分查找来确定模拟电压对应的数字信号。也就是一开始先拿输入电压和参考电压的一半比较,如果输入电压更大,那就再和参考电压的四分之三再比较。相反,如果输入电压更小,那就在和参考电压的四分之一做比较。以此类推,直到比较完成。

3.  ADC驱动设计

然而,即使是最基础的ADC,它在实际的工程应用中也并不简单,因此配套的资源支持也就显得尤为重要。比如,ADC往往不能独立工作,它们需要配合其他的外部电路才能发挥作用,这里面最重要的外部电路之一就是驱动电路。

前面说过,ADC需要对输入信号进行采样、量化和编码,并且输出N位的数字信号,这些操作通常都在数字时钟的一个周期里完成。这就意味着,在采样的过程里,输入信号应该保持不变。这有点类似于数字信号里时钟的保持时间。

在ADC内部,它的输入端其实包含开关和电容阵列,通常等效成一个开关和一个采样电容。当开关闭合的时候,电容充电;等充好电之后,开关断开,,比较器和DAC相互配合在这个时候完成ADC的采样量化的操作。

这样问题就来了,首先,如果对ADC的性能要求比较高,比如需要它的采样频率很高,那么把ADC内部这个电容进行充电的时间就会很短。打个比方,如果采样频率是每秒100万次采样,那么充电时间、即捕获时间(TACQ)可能只有300纳秒。如果输入端不加任何电路作为驱动,那么基本就无法满足这么高采样频率的需求。所以针对这个问题,我们通常会在ADC前端加上一个运算放大器作为驱动,这样就可以在较短的采样时间之内提供足够的电荷给采样电容。

这样还没完,虽然我们可以直接把运放和ADC直接连接起来,但我们在实际应用里很少这么设计。因为在采样频率很大的时候,直接连运放的话就需要很高带宽的运放。另外从仿真里也可以看到,在开关切换的时候,一开始的转换可能会产生较大的瞬时电流,而且驱动电路需要能够在较短的ADC捕获时间(TACQ)之内对ADC内部的采样电容完成充电。

为了满足这些条件,并且避免出现很大的瞬时电流,我们可以在ADC之前加入一个RC电路。大学电路里我们学过,RC电路是用来做滤波的,但这里它的主要作用就是利用这个额外的电容,实现更加快速的充电。运放可以把这个电容充满,然后等ADC内部开关闭合的时候,通过这个电容给ADC内部的电容充电。当然除了这个电容之外,一部分的电荷也来自前端的运放。这个RC电路也叫做charge bucket filter电路,它可以有效的降低对前端运放带宽的需求,所以我们选择较低带宽、更低成本的普通运放就可以满足设计需要。同时它也消除掉了一开始的瞬时电流,也极大的提升了电路的稳定性。

问题又来了,如何确定这些放大器和RC电路的具体大小和指标呢?这里有两种方法,一个就是通过理论公式进行推导,这个在网上有非常详细的推导过程,根据ADC的指标,比如分辨率、采样速率、参考电压等等,就可以一步一步推导出所需RC电路和运放的参数数据。看了这些东西,我真的又不由得想起当年学模电的时候被它支配的恐惧……

当然还有另外一种方法,那就是通过现成的设计工具和仿真工具来进行仿真计算。比如德州仪器TI就提供了一系列相关的工具来简化上面所有的计算过程。一开始可以根据ADC的性能指标选择对应的器件,然后使用ADC SAR Drive工具,来直接计算电阻电容的值,并且得到相应的性能指标。

为了进一步简化设计流程,TI不仅提供设计工具,还有一整套完整的生态把这些工具整合起来。

拿SAR驱动设计举例,TI就提供了很多经典的ADC电路设计方案, 比如这个“高电压电池监控器电路”就一步一步的教我们从设计说明目标,到如何选择合适的器件、如何建模仿真,并得到理想的性能指标。并且在设计的过程中,可以随时回顾 “TI 高精度实验室”视频系列作为参考。

具体到这个电路,我们可以随时查看”高精度实验室”里介绍的选择电荷桶电路(charge bucket filter)的方法,并为这个例子里的放大器、增益设置和数据转换器提供良好的趋稳和交流性能。我们还可以直接下载这个电路的设计文件,按照需求来对设计进行改修改。

4. PADC设计中的噪声

之前的文章里介绍过,模拟芯片的一个最大的问题就是容易受到干扰。事实上,模拟信号能够受到干扰的地方太多了,从之前说过的电磁辐射EMI、到电路板的设计缺陷、电源电压的变化,再到周围环境的各种变化,其实都有可能会对模拟芯片和模拟电路造成干扰,从而造成误差。

对于ADC来说,除了这些外在的因素和干扰之外,它自己本身也会引入误差,这个通常叫做量化误差。也就是说,当我们在把一个连续变化的模拟量,量化成离散变化的数字量的时候,必然会引入这种误差。不管我们划分的粒度有多细,分的份有多小,这种量化误差都会存在。

先说理论,对于一个N位的ADC,每一位代表的电压范围可以通过这个公式得到

其中FSR是ADC支持的电压范围。那么在这个ADC里可以区分的最小的电压变化,就是LSB的一半。举个例子,一个3位的ADC,输入电压从0到8V之间变化。那么它的LSB就是8/2^3 = 1V,能分辨的最小电压变化是1/2V。也就是说,当输入电压是0-0. 5V之间的时候,输出其实都是0,从0.5-1.5之间的时候,输出都是1,以此类推。所以输出其实是一个阶梯曲线。

再结合前面说的环境噪声、也称作热噪声(thermal),那么一个ADC的总噪声就是热噪声和量化噪声的平方和再开方。

是不是看到这里就有点上头了,这个其实只是刚开始。对于一个给定的ADC来说,我们要去量化和测量它的这两个噪声,这样才能更好的、有针对性的设计包含ADC的整个系统。

拿Delta-Sigma ADC举例,它的这两种噪声取决于ADC的分辨率、参考电压、以及输出速率。对于一个包含ADC的系统来说,这种噪声分析更加的复杂。在一个典型的模数转换系统里,通常包含各种模拟噪声滤波器、运放、ADC、以及对数字信号进行处理的数字滤波器、FPGA、MCU等模拟数字芯片,这也构成了一个信号链。要分析这个信号链的噪声,我们不仅要对ADC本身做噪声分析,还要考查整个信号链里每个元件的噪声,以及所有这些元件之间的相互影响。

这个东西听起来好像很复杂,但我们可以使用信号链的有效噪声带宽(Effective Noise Bandwidth)来量化这个分析过程。当然我们也需要一系列的工具、软件和参考资料,来帮助我们做定量分析。

事实上,前面的很多内容都来自TI的电子书《高精度ADC噪声分析基础》。这本书结合了大量TI工程师的设计实践经验,详细介绍了ADC的噪声来源、如何量化分析、如何有效的设计电路来优化ADC的噪声表现。这本书写的非常通俗易懂,同时也兼顾了技术深度,强烈推荐给大家。

在前面说过的TI”高精度实验室”教程里,除了这里介绍的驱动电路设计和噪声分析之外,还有最基本的ADC基础、SAR与Delta-sigma ADC的原理与比较、误差分析、低功耗设计、高速设计等等,非常全面。每个视频后还有配套习题,方便我们巩固学习成果。我觉得无论你是模电新手还是老炮,都能找到适合你的内容。

“高精度实验室”、ADC电路设计指导手册都是TI ADC工具箱的一部分,这里面还有《模拟工程师口袋参考书》,可以用来快速查找和计算各种信号链的调参方法,包括运放带宽、稳定性等等。这些设计资源可以和ADC 模拟工程师计算器,TI TINA 以及Pspice for TI 配合使用,形成了一站式的设计体验。我把这些内容的链接都放在了下面的参考资料里,想学习这方面知识的朋友,一定记得从这里开始。


参考文献:

1. TI 精密ADC学习中心

https://www.ti.com.cn/zh-cn/data-converters/adc-circuit/precision-adcs/learning-center.html

2. TI高精度实验室线上培训视频

https://training.ti.com/ti-precision-labs-adcs

3. 模拟工程师口袋参考指南

https://www.ti.com/seclit/eb/slyw038c/slyw038c.pdf

4. ADC 噪声分析基础 电子书

https://www.ti.com/lit/eb/slyy192/slyy192.pdf

5. 电路设计指导手册

https://www.ti.com.cn/zh-cn/design-resources/design-tools-simulation/analog-circuits/overview.html

6. 模拟工程师计算器

https://www.ti.com.cn/tool/cn/ANALOG-ENGINEER-CALC

7. TI TINA

https://www.ti.com.cn/tool/cn/TINA-TI

8. Pspice for TI

https://www.ti.com.cn/tool/cn/PSPICE-FOR-TI

9. 参考设计

https://www.ti.com.cn/zh-cn/data-converters/adc-circuit/precision-adcs/reference-designs.html#search?famid=2019


免责声明:本文系网络转载,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将立即删除内容!本文内容为原作者观点,并不代表本公众号赞同其观点和对其真实性负责。

TechSugar 做你身边值得信赖的科技新媒体
评论
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 209浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 66浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 79浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 74浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 227浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 145浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 111浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 127浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 122浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 95浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 172浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦