DC-DC转换原理搞不清?来我这里取取经

电源Fan 2021-12-13 08:48

之前也写过一篇关于DC-DC转换原理的文章,个人觉得有点解释不清,可能初学者读了之后会云里雾里,不知道表达的是什么,所以想再用一种虽然很简单,但却很详细的方法再次介绍一下DC-DC的转换原理,当然我说了是针对初学者,大佬们自行忽略。想要熟练的设计应用一些DC-DC功率IC的话掌握最基本的原理,那是无可厚非了,那我就开始班门弄斧了,如果有写的不对的地方,希望有专业的大佬给予指正。
首先因为电感在电路中的连接方式导致DC-DC电路分三种基本类型,那就是我们熟知的《升压转换电路》《降压转换电路》《升降压转换电路》
那哪种情况下会用到这三种电路中的哪一种呢?
其实这个很简单,如果前端的输入电压比负载端的电压低的时候,我们需要驱动负载的话,那我们肯定选择升压电路,前端电路的输入电压比负载电压高的话,那就选择降压电路,也存在一种情况就是说如果前端输入电压是一个宽泛的范围,后端的负载电压也可能存在一个宽泛的范围,那可能有时候需要降压,有时候需要升压,那就当然选择升降压电路。
我们以升压电路为例,说明一下原理:
首先了解一下伏秒定律,电感复位 占空比这几个名词,因为这三种电路中存在一种必不可少的电子元器件 那就是电感。
电感方程:V=L*△I/△t,电感的电压与电感值以及电流变化值,时间的关系式。这个公式很重要。
电感会充电也会放电,那么电感在DC-DC转换电路中需要达到稳态,也就是电感复位这个词,稳态工作状态下的充电时电感电流(能量)增量必然会等于电感放电时的电感电流减量,△Ion=△Ioff,这里的on 跟off 代表电感的充电放电的两个过程,也就是下图中的State1和State2,IDC为电流的直流分量,也就是平均电感电流。IPP为纹波电流,也就是电感公式中所提到的△I。
下面会结合升压电路再进行讲解,V=L*△I/△t,△Ion=△Ioff由这个两个公式结合起来推导出Von*ton=Voff*toff 也就是上面所提到的伏秒定律,电感电压与电压的作用时间的乘积叫伏秒积。
导通阶段的电感电压与其作用时间的乘积必然会等于关断阶段电压电压与其作用时间的乘积,这就是伏秒定律的定义。


什么又是占空比呢?简而言之就是在一个周期内,开关导通时间占整个周期的比率。
D=tON/(tON+tOFF) 那么这个公式结合伏秒定律 VON×tON=VOFF×tOFF 又可以推导出新的公式
D=tON/(tON+tOFF)=VOFF/(VOFF +VON),如下图高电平为TON,低电平为TOFF,一个周期为T。


了解了这几个概念之后我们分析起这电路的原理,就水到渠成了,以升压电路为例:


当开关闭合时,电源给电感充电,当开关断开时,电感储能放电,与电源一起给负载供电。
伏秒定律Von*ton=Voff*toff这时候你可能会问?当开关闭合与开关断开的时候Von与Voff都是多少呢?
其实这个问题很简单,相信著名的基尔霍夫电压定律大家都了解。
也就是闭合回路中所有压降的代数为0,如果你不理解电感上的电压Von跟Voff上的电压都是多少的话,根据基尔霍夫电压定律就帮你很好的解决了这个问题。
很显然,当开关管闭合的时候,闭合回路中只存在电感与电源,那么Von必然就等于电源电压。
VON=VIN-VSW VON≈VIN 假设VSW相比足够小
当开关管断开时,根据电压定律 VOFF=VO+VD-VIN VOFF≈VO-VIN 假设VSW相比足够小
D=tON/(tON+tOFF)=VOFF/(VOFF +VON)
D=(VO-VIN)/{(VO-VIN)+VIN }=(VO-VIN)/ VO→VIN=VO×(1-D)
至此,推出了我们想要的公式VO 与VIN 的关系,最终达到升压的目的。
这个时候你一定会问,那电流呢?负载的电流跟电感的电流又是什么关系呢?
电感电流中不仅有直流分量,还存在纹波电流,还有峰值电流的概念。
电感的纹波电流△I=2IAC
电感的直流分量IL=LDC
峰值电流IP=IAC+IDC


你一定会问那这三种电流概念对我们设计电路的时候都会有什么影响呢?
在此先对与负载电流有直接关系的IDC进行分析,其他两个概念以后再进行讲解,
直流电流IDC=电感平均电流IL,这里很容易理解,输出电容的平均电流为0,在开关管ON的阶段内, 负载没有通过电感向其提供电流,只有在开关OFF的时间阶段内,负载才有经电感的电流,所以很容易推断出即IDC=IO/(1-D)
说到这你肯定会问,由公式来看的话电感的平均到电流只跟负载的电流以及占空比有关系对吗?
那改变开关的频率以及改变电感值会影响到电感的平均电流值吗?
由上图也可以看出IDC为电感电流的斜坡中心,也有的人叫它基准电流,没错IDC的大小仅取决于能量流的需求,如果输出功率不变,输入输出电压不变也就是占空比不变的话,直流分量就不会发生改变。也就是说改变电感值,以及开关频率都不会影响电感的平均电感电流。
实际的实验也验证了这一结论(该实验数据引自精通开关电源设计)


对于DC-DC电路中电感的其他参数的定义解释说明,下次再进行介绍,希望写的这些对初学者有一定的帮助。水平有限,请大佬们多多指教。
原标题:DC-DC转换原理搞不清?来我这里取取经!
原作者:火星国务卿
本文为21ic有奖征文作品,详情请见21ic论坛活动专区:第二届万元红包——蓝V达人有奖征文活动,如果您也有兴趣参与征文,欢迎进入论坛参与活动~

END

来源:21ic网站论坛

版权归原作者所有,如有侵权,请联系删除。

推荐阅读

互感器、电能表接线和原理讲解!

满足你的好奇,我们把示波器拆了!

别小看这不起眼的电阻,里面有很多学问!

电源Fan 了解行业动态,学习深度技术,观察微小事物——电源Fan,一个涨知识的公众号。
评论 (0)
  • 核心板简介创龙科技 SOM-TL3562 是一款基于瑞芯微 RK3562J/RK3562 处理器设计的四核 ARM C ortex-A53 + 单核 ARM Cortex-M0 全国产工业核心板,主频高达 2.0GHz。核心板 CPU、R OM、RAM、电源、晶振等所有元器件均采用国产工业级方案,国产化率 100%。核心板通过 LCC 邮票孔 + LGA 封装连接方式引出 MAC、GMAC、PCIe 2.1、USB3.0、 CAN、UART、SPI、MIPI CSI、MIPI
    Tronlong 2025-03-24 09:59 212浏览
  • 在智能终端设备快速普及的当下,语音交互已成为提升用户体验的关键功能。广州唯创电子推出的WT3000T8语音合成芯片,凭借其卓越的语音处理能力、灵活的控制模式及超低功耗设计,成为工业控制、商业终端、公共服务等领域的理想选择。本文将从技术特性、场景适配及成本优势三方面,解析其如何助力行业智能化转型。一、核心技术优势:精准、稳定、易集成1. 高品质语音输出,适配复杂环境音频性能:支持8kbps~320kbps宽范围比特率,兼容MP3/WAV格式,音质清晰自然,无机械感。大容量存储:内置Flash最大支
    广州唯创电子 2025-03-24 09:08 199浏览
  • 在智能终端设备开发中,语音芯片与功放电路的配合直接影响音质表现。广州唯创电子的WTN6、WT588F等系列芯片虽功能强大,但若硬件设计不当,可能导致输出声音模糊、杂音明显。本文将以WTN6与WT588F系列为例,解析音质劣化的常见原因及解决方法,帮助开发者实现清晰纯净的语音输出。一、声音不清晰的典型表现与核心原因当语音芯片输出的音频信号存在以下问题时,需针对性排查:背景杂音:持续的“沙沙”声或高频啸叫,通常由信号干扰或滤波不足导致。语音失真:声音断断续续或含混不清,可能与信号幅度不匹配或功放参数
    广州唯创电子 2025-03-25 09:32 86浏览
  • 在智慧城市领域中,当一个智慧路灯项目因信号盲区而被迫增设数百个网关时,当一个传感器网络因入网设备数量爆增而导致系统通信失效时,当一个智慧交通系统因基站故障而导致交通瘫痪时,星型网络拓扑与蜂窝网络拓扑在构建广覆盖与高节点数物联网网络时的局限性便愈发凸显,行业内亟需一种更高效、可靠与稳定的组网技术以满足构建智慧城市海量IoT网络节点的需求。星型网络的无线信号覆盖范围高度依赖网关的部署密度,同时单一网关的承载设备数量有限,难以支撑海量IoT网络节点的城市物联系统;而蜂窝网络的无线信号覆盖范围同样高度依
    华普微HOPERF 2025-03-24 17:00 200浏览
  • WT588F02B是广州唯创电子推出的一款高性能语音芯片,广泛应用于智能家电、安防设备、玩具等领域。然而,在实际开发中,用户可能会遇到烧录失败的问题,导致项目进度受阻。本文将从下载连线、文件容量、线路长度三大核心因素出发,深入分析烧录失败的原因并提供系统化的解决方案。一、检查下载器与芯片的物理连接问题表现烧录时提示"连接超时"或"设备未响应",或烧录进度条卡顿后报错。原因解析接口错位:WT588F02B采用SPI/UART双模通信,若下载器引脚定义与芯片引脚未严格对应(如TXD/RXD交叉错误)
    广州唯创电子 2025-03-26 09:05 107浏览
  •       知识产权保护对工程师的双向影响      正向的激励,保护了工程师的创新成果与权益,给企业带来了知识产权方面的收益,企业的创新和发明大都是工程师的劳动成果,他们的职务发明应当受到奖励和保护,是企业发展的重要源泉。专利同时也成了工程师职称评定的指标之一,专利体现了工程师的创新能力,在求职、竞聘技术岗位或参与重大项目时,专利证书能显著增强个人竞争力。专利将工程师的创意转化为受法律保护的“无形资产”,避免技术成果被他人抄袭或无偿使
    广州铁金刚 2025-03-25 11:48 157浏览
  •        当今社会已经步入了知识经济的时代,信息大爆炸,新鲜事物层出不穷,科技发展更是一日千里。知识经济时代以知识为核心生产要素,通过创新驱动和人力资本的高效运转推动社会经济发展。知识产权(IP)应运而生,成为了知识经济时代竞争的核心要素,知识产权(Intellectual Property,IP)是指法律赋予人们对‌智力创造成果和商业标识等无形财产‌所享有的专有权利。其核心目的是通过保护创新和创意,激励技术进步、文化繁荣和公平竞争,同时平衡公共利益与
    广州铁金刚 2025-03-24 10:46 93浏览
  • 家电,在人们的日常生活中扮演着不可或缺的角色,也是提升人们幸福感的重要组成部分,那你了解家电的发展史吗?#70年代结婚流行“四大件”:手表、自行车、缝纫机,收音机,合成“三转一响”。#80年代随着改革开放的深化,中国经济开始飞速发展,黑白电视机、冰箱、洗衣机这“新三件”,成为了人们对生活的新诉求。#90年代彩电、冰箱、全自动洗衣机开始大量进入普通家庭,快速全面普及,90年代末,家电产品实现了从奢侈品到必需品的转变。#00年代至今00年代,随着人们追求高品质生活的愿望,常用的电视机、洗衣机等已经远
    启英AI平台 2025-03-25 14:12 44浏览
  • 文/陈昊编辑/cc孙聪颖‍2025 年,作为中国实施制造强国战略第一个十年计划的关键里程碑,被赋予了极为重大的意义。两会政府工作报告清晰且坚定地指出,要全力加速新质生产力的发展进程,推动传统产业全方位向高端化、智能化与绿色化转型。基于此,有代表敏锐提议,中国制造应从前沿技术的应用切入,逐步拓展至产业生态的构建,最终延伸到提升用户体验的维度,打出独树一帜、具有鲜明特色的发展牌。正是在这样至关重要的时代背景之下,于 AWE 2025(中国家电及消费电子博览会)这一备受瞩目的舞台上,高端厨房的中国方案
    华尔街科技眼 2025-03-25 16:10 49浏览
  • 在嵌入式语音系统的开发过程中,广州唯创电子推出的WT588系列语音芯片凭借其优异的音质表现和灵活的编程特性,广泛应用于智能终端、工业控制、消费电子等领域。作为该系列芯片的关键状态指示信号,BUSY引脚的设计处理直接影响着系统交互的可靠性和功能拓展性。本文将从电路原理、应用场景、设计策略三个维度,深入解析BUSY引脚的技术特性及其工程实践要点。一、BUSY引脚工作原理与信号特性1.1 电气参数电平标准:输出3.3V TTL电平(与VDD同源)驱动能力:典型值±8mA(可直接驱动LED)响应延迟:语
    广州唯创电子 2025-03-26 09:26 128浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦