欢迎加入技术交流QQ群(2000人):电力电子技术与新能源 785975151
高可靠新能源行业顶尖自媒体
在这里有电力电子、新能源干货、行业发展趋势分析、最新产品介绍、众多技术达人与您分享经验,欢迎关注微信公众号:电力电子技术与新能源(Micro_Grid),论坛:www.21micro-grid.com,建立的初衷就是为了技术交流,作为一个与产品打交道的技术人员,市场产品信息和行业技术动态也是必不可少的,希望大家不忘初心,怀有一颗敬畏之心,做出更好的产品!
小编推荐值得一看的书单电力电子技术与新能源推荐书单
合肥工业大学-张兴-高等电力电子技术-风力发电
最经典MOS管电路工作原理及详解没有之一
SiC Power Module Packaging Design High Electrical and Therma
[视频]逆变器Inverters, How do they work
光伏并网逆变器及其关键技术研究—张兴
功率逆变器Power Inverters Explained
[刘进军]Modular Multilevel Converter for Medium-Voltage Motor Drive
[视频]三相并网逆变器DQ控制
[视频]阮新波_LCL并网逆变器电容电流全前馈抑制电网谐波
第五节 浙大反激电源设计指南
继上次的“电阻的基础知识”之后,本次也是为了进行确认,登载了“电容器的基础知识”相关文章。与电阻一样,电容器也是广为人知的基础零部件,但是如果不是在正确理解电容器的基础上使用,不仅得不到所期望的性能,而且还会导致无法正常工作。文章中面向初学者归纳了电容器的原理、结构、使用方法、特性、分类等。
电容器是与电阻、线圈并存的三大被动元器件之一。不仅在电气或电子电路中会使用电容器,而且如果没有电容器电路就不会正常工作。这在智能手机和IoT设备、服务器和网络、以及无线通信系统之类的尖端设备上也是一样的。此外,电容器的性能会对各种电子设备的性能产生影响,因而已成为非常重要的零部件。
电容器的基本结构
简而言之,电容器是能够储蓄电能,并可在必要的时候放电的零部件。可蓄积起来的电能(电荷)与电池相比较少,因而在放出电荷(放电)时只能在短时间内供给电流,但是可反复进行充电(电荷的蓄积)和放电。
这里列出电容器的示意(模式)图。将绝缘体(电介质)平行地夹在金属板(电极)之间而构成的就是电容器。如果向该金属板(电极)间施加直流电压,就可将电荷蓄积起来。这就是电容器的蓄电原理。被蓄积起来的电荷量叫做静电电容,静电电容C是由绝缘体的介电常数ε、电极的表面积S、绝缘体的厚度d来决定的。
C: 静电电容
ε: 绝缘体的介电常数
S: 电极表面积
d: 绝缘体的厚度
可通过增大绝缘体的介电常数ε,增大电极的表面积S,减薄绝缘体的厚度d来增大静电电容C。
电容器的电压和电流
电容器由于其内部是绝缘的,因而不会有直流电流流过,但伴随着所施加电压的变动,通过进行充电和放电,看似好像有电流在电容器中流动。电压随时间变化率越大,流经电容器的电流就越会增大,如下式所示。
Ic =C・dVc/dt
Ic: 电容器电流 (A)
C: 静电电容(F)
dVc/dt: V-t曲线上的斜率
(例1) 充放电波形时
这里就通过电阻从直流电源向尚未被充电的电容器充电后,让其放电时的电容器电压和电流进行说明。
电路图上,若在充电侧将开关置于ON,V0/R1的峰值电流就会流向电容器,而后电流会随着电容器的电压Vc升高而降低,当Vc = V0时,充电完成,电流成为零。
然后,若在放电侧将开关置于ON,V0/R2的峰值电流就会流向电容器,而后电流会随着电容器的电压Vc降低而降低,当Vc = 0时,放电完成,电流成为零。
这里需要理解的是,电容器的电流Ic的大小依赖于电容器电压Vc变化的大小。
此外,开关ON时,V0/R的电流就会流过,而在这里如果R=0,则理论上会有无限大的电流流过瞬间完成充放电。
然而,实际上因受到电容器本身具有的电阻成分(ESR)或配线电阻及电抗成分的影响而不会成为无限大,但电阻成分远比电池小,因而可以说是能够在瞬时进行充放电的零部件。
(例2) 交流波形时
这里就向电容器施加交流电压时的电容器电压和电流进行说明。
例1中叙述了流向电容器的电流大小依赖于电容器电压变化的大小,这在交流波形时也是一样的。
① 首先,当电压从0V上升时,会有大量的电流流过电容器,而电流则会随着电压的上升速度放慢而下降,并在电压成为最大的时点(电压变化为零)电流成为零。
② 当电压从最大值开始下降时,负电流开始流过电容器,在电压成为零这一点(电压变化为最大)电流成为最大。
对于③ 、④的区域,与上述原理一致。
在对此电压和电流的波形进行观察时,如果电压波形为正弦波,则电流波形也为正弦波,此外还可弄清电流波形在电压波形之前偏移1/4周期(电流的相位先行90°)的情况。
此外,电压的变化大就会有较大的电流流过这种情况表明,越是电压变化大,高频流过的电流就会越大。
此时流过的电流(有效值)如下式所示。
Ic: 电容器电流 [A]
π: 圆周率 (3.14)
f: 频率 [Hz]
C: 静电电容[F]
Vc: 电源电压 [Vrms]
Ic=2πf・C・Vc
电容器的基本使用方法
如前所述,电容器具有以下特性,即①能够在瞬时进行充电和放电;②直流不会通过,但交流则会通过;③频率越高交流就越容易通过,电路中采用借助于这些特性的使用方法。
这里列出典型的使用方法的电路。
【放电电路】
放电电路是通过释放蓄积在电容器中的电荷来使得被连接的负荷发生动作的电路。由于放电电路可在瞬时将大电流释放出去,因而可将其作为相机的闪光灯或紧急时的后备电源来使用。电路例中,若将开关连接到电源侧,电容器就会被充电;而当电荷蓄积至电源电压时,充电就会停止。若将开关连接到负荷(灯泡)侧,电容器就会开始放电,灯泡点亮。
【平滑电路】
平滑电路是使得对交流进行整流后的脉动电流变得平滑并将其转换为直流的电路。电源电路就是其典型的例子。通过电容器来使得利用二极管桥对交流的输入电压进行整流(电路例中为全波整流)而得的电压波(脉动、脉动电流)变得平坦。
【去耦电路】
去耦电路如其名称所示,是为了分离信号耦合而利用电容器的电路。此例中,如图所示,通过对基本交流中含有频率高的交流成分(噪声)的信号路径加入电容器,只有频率高的噪声成分通过电容器后被分离,之后令噪声不会被传递。去除开关电源中的开关噪声的用途就属于此种目的。
【耦合电路】
耦合电路是不让直流成分通过而只让交流成分通过的电路。希望在音频信号的放大电路等中排除直流成分造成的影响(也称之为DC截除等)时使用耦合电路。
除此之外,还有例如谐振电路、滤波器电路、备用电路、时间常数电路和功率因数改善等各种使用方法。
电容器的特性
理想的电容器只含有静电电容成分,但是实际的电容器则含有电阻成分和电感成分。这些寄生成分对电容器的性能产生较大的影响。电容器的简易等效电路如图所示。
实际的电容器的等效电路中包含有ESR(等效串联电阻)、ESL(等效串联电感)。此外,理想的电容器的电极间是绝缘的,但是实际上会存在若干的漏电流。
这里对这些成分进行了归纳。
此外,另外一个重要的特性是具有阻抗。简单地说,阻抗即为交流电路中的电压与电流之比,相当于直流电路中的电阻。符号使用Z,单位与电阻相同,使用Ω。
电容器的阻抗(Z)用下式①来表示,阻抗的绝对值可通过下式②来计算。
Z: 阻抗[Ω]
R: 电阻成分=ESR[Ω]
j: 虚数
π: 圆周率 (3.14)
f: 频率 [Hz]
L: 电感成分=ESL[H]
C: 静电电容[F]
根据此式,可了解以下事项。
1) 在频率低的区域,阻抗几乎是由静电电容(C)来决定的。
2) 谐振频率(πf L = 1/(2πf C)下,阻抗是由ESR来决定的。
3) 在频率高的区域,阻抗几乎是由ESL来决定的。
如果用图形来表示这种情况,则如右图所示。
电容器的阻抗Z,在谐振频率之前呈容性下降,而在谐振频率C和ESL的影响成为零,只受ESR的影响,过了这一点则成为电感性(ESL),并与频率一起增加。
在将电容器用于其主要用途即噪声吸收(去耦)中时,噪声吸收效果是由阻抗来决定的,因而需要按照以下的要点来选定零部件
1) 噪声的频率与电容器的谐振频率接近。
2) ESR小。
3) 高频噪声时,ESL小。
电容器的种类和特征(概略)
电容器根据所使用的材料和结构等有许许多多的种类。此外,特性种类而有所差异,设计时根据这些特点来选择。主要的电容器种类如下图所示。
限于篇幅,已做删减,另文章首尾冠名广告正式招商,功率器件,SiC,GaN,数字电源,新能源厂家都可合作,有意者加微信号1768359031详谈。
说明:本文来源网络;文中观点仅供分享交流,不代表本公众号立场,转载请注明出处,如涉及版权等问题,请您告知,我们将及时处理。
Please clik the advertisement and exit
重点
如何下载《光伏逆变器》板块内高清PDF电子书
点击文章底部阅读原文,访问电力电子技术与新能源论坛(www.21micro-grid.com)下载!
或者转发所要文章到朋友圈不分组不屏蔽,然后截图发给小编(微信:1413043922),小编审核后将文章发你!
推荐阅读:点击标题阅读
常用的两种PID算法-位置式与增量式PID[附程序]
开关电源中11种拓扑结构,怎么挑选才能事半功倍?
大功率SiC MOSFET逆变器驱动技术
华为光伏在七年间是如何做到全球第一的?
突发:哈工大、哈工程被禁用MATLAB/Simulink软件,美国「实体名单」影响深入校园
MATLAB/Simulink不能用了,我给你推荐这些软件New_Soft_Switching_Technologies_for_Very_High_Efficiency
更多精彩点下方“阅读原文”!
快来“在看”一下吧!