打破两堵“墙”,存算一体芯片如何发挥作用?

半导体产业纵横 2021-12-09 18:00

 

所有事物的发展都代表了当下时代对其提出的新要求,半导体行业也没有例外。

 

前日,阿里达摩院发布了全球首款使用混合键合3D堆叠技术实现存算一体的芯片,在行业内引起了不小的轰动。存算一体技术作为打破存储墙和功耗墙的重要解决方案,又一次站在了聚光灯下。

 

两堵”墙”:存算一体技术发展的必要性

 

存算一体的发展是时代发展的要求,现有冯·诺伊曼计算系统采用存储和运算分离的架构,存在“存储墙”与“功耗墙”瓶颈,严重制约系统算力和能效的提升。

 

在冯·诺伊曼架构的核心设计中计算机的组成架构包括运算器、控制器、存储器、输入设备、输出设备五部分。

 

冯·诺伊曼架构,来源:维基百科

 

在冯·诺伊曼架构中,计算单元要先从内存中读取数据,计算完成后,再存回内存,这样才能输出。随着半导体产业的发展和需求的差异,处理器和存储器二者之间走向了不同的工艺路线。由于工艺、封装、需求的不同,从1980年开始至今二者之间的性能差距越来越大。数据显示,从 1980年到 2000年,处理器和存储器的速度失配以每年50%的速率增加。

 

存储器数据访问速度跟不上处理器的数据处理速度,数据传输就像处在一个巨大的漏斗之中,不管处理器灌进去多少,存储器都只能“细水长流”。两者之间数据交换通路窄以及由此引发的高能耗两大难题,在存储与运算之间筑起了一道“存储墙”。

 

此外,在传统架构下,数据从内存单元传输到计算单元需要的功耗是计算本身的约200倍,因此真正用于计算的能耗和时间占比很低,数据在存储器与处理器之间的频繁迁移带来严重的传输功耗问题,称为“功耗墙”。

 

再加上人工智能的发展,需要运算的数据量开始了极大的增长。人工智能算法是一个很庞大和复杂的网络,包含大量的图像数据和权重参数,计算的过程中又会产生大量的数据,数据需要在计算单元和存储单元之间进行频繁的移动,这迫切需要合适的手段来减少数据移动及其带来的性能和功耗开销。

 

自1945年提出的冯·诺伊曼架构,其本身仍是现代计算机的主要架构,在此架构下关于存算流程的弯路,在当时是合理的。但是在人工智能飞速发展的现在,却有必要颠覆它。

 

于是,业界开始寻找弱化或消除存储墙及功耗墙问题的方法,开始考虑从聚焦计算的冯·诺伊曼体系结构转向存算一体结构。

 

近存储计算还是存内计算?

 

为了解决以上问题,存算一体芯片应运而生。其核心思想是将部分或全部的计算移到存储中,计算单元和存储单元集成在同一个芯片,在存储单元内完成运算,让存储单元具有计算能力。这种极度近邻的方式很大程度上降低了数据移动的延迟和功耗,解决了存储墙问题。

 

阿里达摩院发布的2020年十大科技趋势里,它认为存算一体是突破AI算力瓶颈的关键技术,朝着这个趋势阿里发布了近存储计算芯片。近存储计算与存内计算都是存算一体的实现方式,但是概念不同。

 

近存储计算指的是计算操作由位于存储芯片外部的独立计算芯片完成。通过采用先进的3D封装方式把内存和计算单元封装在一起,可以达到几千根甚至上万根连线,两者之间的带宽增加,提高了数据搬运速度。近存储计算本质上来说还没有做到真正的存算“一”体。


它从一开始设计计算芯片和存储芯片的时候,就设计好了链接两方的通路,将数据运输距离极致缩短。设计芯片本就相当于用这些晶体管在指甲盖大小的面积上建造一座城市,现在是需要重新设计两座城市,并提前在中间设计好互相链接的通道,这是难点,也是竞争力。阿里发布的,正是采用这个技术的存算一体芯片。

 

存内计算指的是通过在存储器颗粒上嵌入算法,使得存储芯片内部的存储单元完成计算操作,存储单元和计算单元完全融合,没有独立的计算单元。

 

在这种方式下,数据不需要单独的运算部件来完成计算,而是在存储单元中完成存储和计算,消除了数据访存延迟和功耗,是一种真正意义上的存储与计算融合。同时,由于计算完全依赖于存储,因此可以开发更细粒度的并行性,获得更高的性能和能效,存算一体对于符合的应用会带来较高的性能收益和能效收益,这种方式尤其适用于人工智能应用。

 

积极布局的龙头与勇往直前的初创公司

 

存算一体仍旧是解决存储墙和功耗墙问题的重要技术,一些处于行业领先地位的半导体公司正在积极进行自研,还有一些公司通过投资初创公司来布局存算一体技术。

 

国外巨头中,三星早在2019年就阐述了其在2030年希望完成的愿景:当AI半导体技术变得更加复杂时,存储器和处理器将最终集成为一体。今年2月,三星发布了HBM-PIM存内计算技术,在高带宽内存 (HBM) 配置中集成内存处理 (PIM) 。PIM 将可编程计算单元 (PCU) 的 AI 引擎集成到内存核心中来处理某些逻辑函数,PIM 将刺激需要持续性能改进的 AI 应用程序的使用量增长。与现有的内存解决方案相比,三星的 PIM 理论上可以通过可编程计算单元 (PCU) 提高 4 倍的性能。

 

此外,IBM在2016年就透露了其关于存内计算的研发计划,提出了混合精度内存计算的新概念。

 

美国存算一体AI芯片初创公司Mythic发布的存算一体芯片,依靠模拟计算技术,将足够的存储与大量并行计算单元打包在芯片上,以最大化内存带宽并减少数据移动的能力。在今年C轮融资中,Mythic筹集7000万美元,自成立以来Mythic的总融资额已达到1.65亿美元。

 

此外,美国另一家专注于语音识别的存算一体AI芯片公司Syntiant也受到微软、亚马逊、应用材料、英特尔、摩托罗拉和博世的支持。

 

在国内企业中,看准存算一体趋势的阿里也激情入局,打出了一张好牌。而阿里也不止步于此,近存储技术之后,阿里还将向存内计算技术进发。

 

除了阿里外,众多初创公司也努力在存算一体这个赛道狂奔,一些厂商也通过投资初创公司来布局存算一体技术,还包括知存科技、后摩智能、闪亿半导体等初创公司。

 

知存科技于2017年成立,目前知存推出国际首个存算一体加速器WTM1001和首个存算一体SoC芯片WTM2101。今年,知存科技获得了华为哈勃的投资。知存科技已经获得五轮产业资本领投融资,累计融资3亿元。

 

闪亿半导体作为该领域国产化芯片的先行者,于2017年7月创立,创始团队分别毕业于清华大学和北京大学,闪亿专注于研发、生产最先进的存储-运算阵列SoC芯片,聚焦人工智能计算。其在2019年10月发布了其首款存算一体芯片,该公司负责人鲁辞莽表示,这款芯片在运行效率上能提高10TOPS/W,成本比传统AI芯片方案下降超一半。

 

后摩智能更是于今年完成3亿元融资,资金将用来加速推动存算一体技术落地,作为国内首家采用存算一体技术打造大算力芯片的公司,后摩智能也拥有充满野心的愿景:打造出具有“十倍效应”的AI芯片, 满足真正人工智能时代的超大算力需求,用无限算力去改变世界。

 

存算一体的荆棘之路

 

当前,存算一体芯片产业还算不上成熟,在产业链方面仍旧存在上游支撑不足,下游应用不匹配的诸多挑战。在芯片的设计阶段,另外由于存算一体芯片和常规的芯片设计方案有所不同,目前市面上也没有成熟的专用EDA工具辅助设计和仿真验证;芯片流片之后,没有成熟的工具协助测试;在芯片落地应用阶段,暂时没有专用的软件与之匹配。

 

类脑技术暂时遥不可及,存算一体看起来是目前问题的较优解。技术的发展来源于日益增长的需求,考虑如何进行创新与创造,如何完善重要技术的生态链,是行业上下游厂商应该考虑的问题。







半导体产业纵横 (微信号: ICViews)半导体产业纵横是神州数码数智创新+平台下的自媒体账号,立足产业视角,提供及时、专业、深度的前沿洞见、技术速递、趋势解析,赋能中国半导体产业,我们一直在路上。
评论
  • 随着通信技术的迅速发展,现代通信设备需要更高效、可靠且紧凑的解决方案来应对日益复杂的系统。中国自主研发和制造的国产接口芯片,正逐渐成为通信设备(从5G基站到工业通信模块)中的重要基石。这些芯片凭借卓越性能、成本效益及灵活性,满足了现代通信基础设施的多样化需求。 1. 接口芯片在通信设备中的关键作用接口芯片作为数据交互的桥梁,是通信设备中不可或缺的核心组件。它们在设备内的各种子系统之间实现无缝数据传输,支持高速数据交换、协议转换和信号调节等功能。无论是5G基站中的数据处理,还是物联网网关
    克里雅半导体科技 2025-01-10 16:20 433浏览
  • 新年伊始,又到了对去年做总结,对今年做展望的时刻 不知道你在2024年初立的Flag都实现了吗? 2025年对自己又有什么新的期待呢? 2024年注定是不平凡的一年, 一年里我测评了50余块开发板, 写出了很多科普文章, 从一个小小的工作室成长为科工公司。 展望2025年, 中国香河英茂科工, 会继续深耕于,具身机器人、飞行器、物联网等方面的研发, 我觉得,要向未来学习未来, 未来是什么? 是掌握在孩子们生活中的发现,和精历, 把最好的技术带给孩子,
    丙丁先生 2025-01-11 11:35 447浏览
  • 01. 什么是过程能力分析?过程能力研究利用生产过程中初始一批产品的数据,预测制造过程是否能够稳定地生产符合规格的产品。可以把它想象成一种预测。通过历史数据的分析,推断未来是否可以依赖该工艺持续生产高质量产品。客户可能会要求将过程能力研究作为生产件批准程序 (PPAP) 的一部分。这是为了确保制造过程能够持续稳定地生产合格的产品。02. 基本概念在定义制造过程时,目标是确保生产的零件符合上下规格限 (USL 和 LSL)。过程能力衡量制造过程能多大程度上稳定地生产符合规格的产品。核心概念很简单:
    优思学院 2025-01-12 15:43 496浏览
  • ARMv8-A是ARM公司为满足新需求而重新设计的一个架构,是近20年来ARM架构变动最大的一次。以下是对ARMv8-A的详细介绍: 1. 背景介绍    ARM公司最初并未涉足PC市场,其产品主要针对功耗敏感的移动设备。     随着技术的发展和市场需求的变化,ARM开始扩展到企业设备、服务器等领域,这要求其架构能够支持更大的内存和更复杂的计算任务。 2. 架构特点    ARMv8-A引入了Execution State(执行状
    丙丁先生 2025-01-12 10:30 455浏览
  • 流量传感器是实现对燃气、废气、生活用水、污水、冷却液、石油等各种流体流量精准计量的关键手段。但随着工业自动化、数字化、智能化与低碳化进程的不断加速,采用传统机械式检测方式的流量传感器已不能满足当代流体计量行业对于测量精度、测量范围、使用寿命与维护成本等方面的精细需求。流量传感器的应用场景(部分)超声波流量传感器,是一种利用超声波技术测量流体流量的新型传感器,其主要通过发射超声波信号并接收反射回来的信号,根据超声波在流体中传播的时间、幅度或相位变化等参数,间接计算流体的流量,具有非侵入式测量、高精
    华普微HOPERF 2025-01-13 14:18 462浏览
  •   在信号处理过程中,由于信号的时域截断会导致频谱扩展泄露现象。那么导致频谱泄露发生的根本原因是什么?又该采取什么样的改善方法。本文以ADC性能指标的测试场景为例,探讨了对ADC的输出结果进行非周期截断所带来的影响及问题总结。 两个点   为了更好的分析或处理信号,实际应用时需要从频域而非时域的角度观察原信号。但物理意义上只能直接获取信号的时域信息,为了得到信号的频域信息需要利用傅里叶变换这个工具计算出原信号的频谱函数。但对于计算机来说实现这种计算需要面对两个问题: 1.
    TIAN301 2025-01-14 14:15 97浏览
  • 随着全球向绿色能源转型的加速,对高效、可靠和环保元件的需求从未如此强烈。在这种背景下,国产固态继电器(SSR)在实现太阳能逆变器、风力涡轮机和储能系统等关键技术方面发挥着关键作用。本文探讨了绿色能源系统背景下中国固态继电器行业的前景,并强调了2025年的前景。 1.对绿色能源解决方案日益增长的需求绿色能源系统依靠先进的电源管理技术来最大限度地提高效率并最大限度地减少损失。固态继电器以其耐用性、快速开关速度和抗机械磨损而闻名,正日益成为传统机电继电器的首选。可再生能源(尤其是太阳能和风能
    克里雅半导体科技 2025-01-10 16:18 319浏览
  • 根据Global Info Research(环洋市场咨询)项目团队最新调研,预计2030年全球无人机电池和电源产值达到2834百万美元,2024-2030年期间年复合增长率CAGR为10.1%。 无人机电池是为无人机提供动力并使其飞行的关键。无人机使用的电池类型因无人机的大小和型号而异。一些常见的无人机电池类型包括锂聚合物(LiPo)电池、锂离子电池和镍氢(NiMH)电池。锂聚合物电池是最常用的无人机电池类型,因为其能量密度高、设计轻巧。这些电池以输出功率大、飞行时间长而著称。不过,它们需要
    GIRtina 2025-01-13 10:49 165浏览
  • PNT、GNSS、GPS均是卫星定位和导航相关领域中的常见缩写词,他们经常会被用到,且在很多情况下会被等同使用或替换使用。我们会把定位导航功能测试叫做PNT性能测试,也会叫做GNSS性能测试。我们会把定位导航终端叫做GNSS模块,也会叫做GPS模块。但是实际上他们之间是有一些重要的区别。伴随着技术发展与越发深入,我们有必要对这三个词汇做以清晰的区分。一、什么是GPS?GPS是Global Positioning System(全球定位系统)的缩写,它是美国建立的全球卫星定位导航系统,是GNSS概
    德思特测试测量 2025-01-13 15:42 466浏览
  • 随着数字化的不断推进,LED显示屏行业对4K、8K等超高清画质的需求日益提升。与此同时,Mini及Micro LED技术的日益成熟,推动了间距小于1.2 Pitch的Mini、Micro LED显示屏的快速发展。这类显示屏不仅画质卓越,而且尺寸适中,通常在110至1000英寸之间,非常适合应用于电影院、监控中心、大型会议、以及电影拍摄等多种室内场景。鉴于室内LED显示屏与用户距离较近,因此对于噪音控制、体积小型化、冗余备份能力及电气安全性的要求尤为严格。为满足这一市场需求,开关电源技术推出了专为
    晶台光耦 2025-01-13 10:42 487浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦