ISO26262笔记——如何理解ASIL分解?

汽车ECU开发 2021-12-09 08:06

摘要:


接触功能安全的读者一定对ASIL分解不陌生,都知道ASIL B(D)意味着原本需求为ASIL D,分解成了ASIL B,从而降低功能安全开发难度。但是如果继续追问则是一知半解,比如:

ASIL分解的原则是什么?

进行ASIL分解需要满足什么条件?

ASIL分解到底如何降低了功能安全开发难度?

本文试图对这些问题进行回答,在介绍分解原则的同时指出其中的关键点,抛砖引玉,希望能给读者带来一些参考。

01.

什么是ASIL分解?

软件工程师可能经常遇到这样一个场景:在进行功能安全开发时,Safety Goal的ASIL等级太高,输入信号无法满足要求。对于这一种情况,ISO 26262提供了一个特殊的裁剪方法以降低对功能安全需求的ASIL等级,即“ASIL分解”。

这一方法的核心点是通过将一条功能安全需求分解成两条相互独立的需求并分配到两个及两个以上相互独立的元素(如软件模块、输入信号等)上。由于冗余的存在,对每个分解后的相关元素的ASIL等级要求可以降低。

ASIL分解有特定的标记方式。ISO 26262, part9第5章要求:

应通过在括号中给出安全目标的ASIL等级,对每个分解后的ASIL等级做标注。
each decomposed ASIL shall be marked by giving the ASIL of the safety goal in parenthesis.

比如,如果一个ASILD的要求分解成一个ASILC的要求和一个ASIL A 的要求,则应标注成“ASIL C(D)”和“ASIL A(D)”。如果ASIL C(D)的要求进一步分解成一个ASILB的要求和一个ASILA的要求,则应使用安全目标的ASIL等级将其标注为“ASIL B(D)”和“ASIL A(D)”。

02.

ASIL分解的原则?

而对于ASIL分解原则,在ISO 26262, part9第5章中也给出了说明,现总结如下。

注:以下提到的QM即“Quality Management”,表示只要按照企业质量管理流程开发就可以满足ISO 26262要求,没有其他特殊功能安全要求。

  1. ASIL D分解可选择以下任意一种方式

  • 一个ASIL C(D)的要求和一个ASIL A(D)的要求;或

  • 一个ASIL B(D)的要求和一个ASIL B(D)的要求;或

  • 一个ASIL D(D)的要求和一个QM(D)的要求。

2. ASIL C分解可选择以下任意一种方式

  • 一个ASIL B(C)的要求和一个ASIL A(C)的要求;或

  • 一个ASIL C(C)的要求和一个QM(C)的要求。

3. ASIL B分解可选择以下任意一种方式

  • 一个ASIL A(B)的要求和一个ASIL A(B)的要求;或

  • 一个ASIL B(B)的要求和一个QM(B)的要求。

4. 一个ASIL A 的要求不应被进一步分解,除非需要分解成一个ASIL A(A)的要求和一个QM(A)的要求。

ASIL分解原则,截图来自ISO 26262-2018, part9

03.

进行ASIL分级需要满足什么条件?

进行ASIL分解最重要的前提是参与ASIL分解的元素间充分独立。

ASIL分解本质概念是冗余,冗余就要求不存在共因失效或者级联失效导致互为冗余的元素同时失效。因此ISO 26262要求,对于使用ASIL分解的功能安全概念,必须要通过相关失效分析(DFA, Dependent Failure Analysis)证明分解后的相关元素间相互独立。

于此同时,ISO 26262还指出,使用同构冗余(如通过复制设备或复制软件)的情况下,考虑到硬件和软件的系统性失效,不能降低ASIL等级,除非相关失效的分析提供了存在充分独立性或潜在共因指向安全状态的证据。因此,同构冗余因缺少要素间的独立性,通常不足以降低ASIL等级。

比如下面的例子,如果两个轮速传感器WSS(Wheel Speed Sensor)是同一个供应商的同一批次的传感器,实际上属于同构冗余,分解不成立。

04.

ASIL分级如何降低了功能安全开发难度?

本质上每条功能安全需求的ASIL等级属性的背后是对系统性失效随机硬件失效的要求。

随机硬件失效(random hardware failure):在硬件要素的生命周期中,非预期发生并服从概率分布的失效。
系统性失效(systematic failure):以确定的方式与某个原因相关的失效,只有对设计或生产流程、操作规程、文档或其他相关因素进行变更后才可能排除这种失效。
随机失效与系统性失效

从ISO 26262的要求上看,ISO 26262对系统性失效和随机硬件失效的的要求存在明显的不同。

对系统性失效的要求

ISO 26262对系统性失效的要求存在于相关项的各个层级,硬件元器件层(HW part level)、软件单元层(SW-Unit level)、组件层(component level)和系统层(system level)都有各自对应的要求。而且同时上面系统性失效的定义可以看出,ISO 26262对系统性失效的要求本质上可以理解为对设计流程和验证流程的要求。

层级划分图示

这样一来,ASIL分解后的需求分配到组成相关项整体中的某个(些)元素上,对于这些元素的系统性失效要求降低了。

举个软件元素的例子,如下图所示,分解前对软件模块A的要求为ASIL D。

而分解以后对软件模块A的要求降低为ASIL B(D)。

在分解之前,模块A需要遵循ASIL D的要求来开发以限制系统性失效;而分解后只需要按照ASIL B的要求来限制系统性失效,从而降低了开发难度和开发成本。拿对模块A软件单元的测试要求来说,从下图可以看出,ASIL B的要求比ASIL D更加宽松了


对随机硬件失效的要求

对随机硬件失效而言, 我们知道ISO 26262要求从以下三个方面的指标衡量随机硬件失效:

  • 单点故障度量(single-point fault metric, SPFM)

  • 潜伏故障度量(Latent fault metric, LFM)

  • 随机硬件失效概率度量(Probabilistic Metric for random Hardware Failures,PMHF)

而关于ASIL分解对随机硬件失效的影响,ISO 26262, part9明确指出:

The requirements on the evaluation of the hardware architectural metrics and the evaluation of safety goal violations due to random hardware failures in accordance with ISO 26262-5 shall remain unchanged by ASIL decomposition. (针对随机硬件失效的要求,包括硬件架构度量的评估和由于随机硬件失效导致违背安全目标的评估,在ASIL分解后仍保持不变。)

这个背后是因为ISO 26262对随机硬件失效的要求是站在将相关项(item)作为一个整体的角度来评估的,通过计算系统整体的随机硬件失效指标(SPFM、LFM、PMHF)来确定系统的Safety Goal是否满足要求。

同时这也意味着不论是哪一个层级,对随机硬件失效要求的ASIL等级都应该是分解前的值。

举个例子,驾驶员在车辆静止时可以通过按钮激活某舒适性功能,但是如果在车速大于10kph时错误激活,有造成ASIL D危害的风险。该功能由ECU A实现,需要在激活该功能前正确判断车速,当车速高于10kph时禁止激活。

ECU A的系统架构如下:

safety concept分析如下图所示。车速计算依赖互为冗余且充分独立的轮速传感器和变速箱轴速传感器。

论对轮速和变速箱轴速的需求是下列哪一种分配:

  • 轮速ASIL A(D); 变速箱轴速ASIL C(D)

  • 轮速ASIL B(D); 变速箱轴速ASIL B(D)

  • 轮速ASIL C(D); 变速箱轴速ASIL A(D)

对于ECU A这个整体而言,随机硬件失效要求都要符合ISO 26262, part5中对下面三个指标的ASIL D的要求。

  • SPFM≥99%

  • LFM≥90%

  • PMHF<10 FIT


上面的例子验证了:

无论在哪一个层级,对随机硬件失效要求的ASIL等级都应该是分解前的值。


但是,不同的层级ASIL等级都继承分解前的ASIL等级,那么ASIL等级背后的要求也一样一样吗?

答案是否定的。

如果我们站在组成系统的部件的角度,拿上面的轮速传感器举例,对轮速传感器的需求是ASIL B(D),那么对轮速传感器的单点故障度量SPFM满足分解前的ASIL D的要求。

但是,站在系统层的角度,只有当轮速传感器和变速箱轴传感器同时发生故障时,才会导致功能产生ASIL D的危害。也就是说,轮速传感器的单点故障是系统层的潜伏故障。此时,对轮速传感器的单点故障度量SPFM的要求不是表1而是表2,要求从≥99%降低到了≥90%。

表1
表2

综上,我们可以做出如下总结:

ASIL分解可以降低系统中不同层级的元素(如软件、硬件等)的系统性失效要求ASIL分解无法降低相关项(item)作为一个整体的随机硬件失效要求,即分解前后对相关项的SPFM、LFM和PMHF要求都不变ASIL分解可以降低相关项的某个component的随机硬件失效要求,准确地说是降低了对部件的SPMF和LFM的要求 (注:对PMHF是item level相关项层级的要求,在component层面不做考虑)

本文福利:分享报告《2020特斯拉影响力报告》公众号对话框回复汽车ECU开发003下载
阅读原文,关注作者知乎

推荐阅读

如何写一份牛X的汽车软件需求

关于对汽车ECU软件测试的理解

特斯拉最新中央计算模块(CCM)解析

2021款特斯拉Model Y ECU接口梳理

详解CANoe之CAPL编程

关于CAN时间同步的理解

dbc文件的格式以及创建详解

大众ID.4 X网络架构详解

基于UDS的Bootloder详解

关于整车上下电流程的理解

一文详解CAN总线错误帧|附下载

DoIP协议介绍,资料分享!

详解车载网络 OTA系统的开发|文末附下载

一文了解汽车嵌入式AUTOSAR架构|附下载

特斯拉Autopilot系统安全研究|附dbc下载

分享不易,恳请点个【在看】
汽车ECU开发 专注于汽车电子ECU软件开发,技术分享。
评论
  • 职场是人生的重要战场,既是谋生之地,也是实现个人价值的平台。然而,有些思维方式却会悄无声息地拖住你的后腿,让你原地踏步甚至退步。今天,我们就来聊聊职场中最忌讳的五种思维方式,看看自己有没有中招。1. 固步自封的思维在职场中,最可怕的事情莫过于自满于现状,拒绝学习和改变。世界在不断变化,行业的趋势、技术的革新都在要求我们与时俱进。如果你总觉得自己的方法最优,或者害怕尝试新事物,那就很容易被淘汰。与其等待机会找上门,不如主动出击,保持学习和探索的心态。加入优思学院,可以帮助你快速提升自己,与行业前沿
    优思学院 2025-01-09 15:48 98浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 98浏览
  • Snyk 是一家为开发人员提供安全平台的公司,致力于协助他们构建安全的应用程序,并为安全团队提供应对数字世界挑战的工具。以下为 Snyk 如何通过 CircleCI 实现其“交付”使命的案例分析。一、Snyk 的挑战随着客户对安全工具需求的不断增长,Snyk 的开发团队面临多重挑战:加速交付的需求:Snyk 的核心目标是为开发者提供更快、更可靠的安全解决方案,但他们的现有 CI/CD 工具(TravisCI)运行缓慢,无法满足快速开发和部署的要求。扩展能力不足:随着团队规模和代码库的不断扩大,S
    艾体宝IT 2025-01-10 15:52 15浏览
  • 在当前人工智能(AI)与物联网(IoT)的快速发展趋势下,各行各业的数字转型与自动化进程正以惊人的速度持续进行。如今企业在设计与营运技术系统时所面临的挑战不仅是技术本身,更包含硬件设施、第三方软件及配件等复杂的外部因素。然而这些系统往往讲究更精密的设计与高稳定性,哪怕是任何一个小小的问题,都可能对整体业务运作造成严重影响。 POS应用环境与客户需求以本次分享的客户个案为例,该客户是一家全球领先的信息技术服务与数字解决方案提供商,遭遇到一个由他们所开发的POS机(Point of Sal
    百佳泰测试实验室 2025-01-09 17:35 103浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 93浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 79浏览
  • HDMI 2.2 规格将至,开启视听新境界2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新HDMI规范为规模庞大的 HDMI 生态系统带来更多选择,为创建、分发和体验理想的终端用户效果提供更先进的解决方案。新技术为电视、电影和游戏工作室等内容制作商在当前和未来提供更高质量的选择,同时实现多种分发平台。96Gbps的更高带宽和新一代 HDMI 固定比率速率传输(Fixed Rate Link)技术为各种设备应用提供更优质的音频和视频。终端用户显示器能以最
    百佳泰测试实验室 2025-01-09 17:33 107浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 113浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 84浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 97浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 114浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦