全网最通俗易懂SPWM入门教程,快来白嫖

硬件笔记本 2021-12-09 07:30

▼关注公众号:硬件笔记本▼


目录

  • 基本原理

  • 自然采样法

  • 规则采样法

    • 单极性

    • 双极性

  • 如何编写程序

  • 总结


基本原理

SPWM的全称是(Sinusoidal PWM),正弦脉冲宽度调制是一种非常成熟,使用非常广泛的技术;

之前在PWM的文章中介绍过,基本原理就是面积等效原理,即冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同 。

换句话说就是通过一系列形状不同的窄脉冲信号,相对应时间的积分相等(面积相等),其最终效果相同

所以SPWM就是输入一段幅值相等的脉冲序列去等效正弦波,因此输出为高的脉冲时间宽度基本上呈正弦规律变化;

这里通常使用的采样方法是:自然采样法和规则采样法;

自然采样法

自然采样法是用需要调制的正弦波与载波锯齿波的交点,

来确定最终PWM脉冲所需要输出的时间宽度,最终由此生成SPWM波;

具体如下图所示,这里会对局部①部分进行简单分析,下面进一步介绍;

SPWM波形

局部①的情况如下图所示;简单分析一下整个图形的情况;

  • 锯齿波和调制正弦波的交点为AB
  • 因此A点所需时间为T1B点所需时间为T2
  • 所以在该周期内,PWM所需要的脉冲时间宽度Ton满足:
  • 最终结论就是,只要求出A点B点位置,就可以求出
自然采样法

这里对于求解A,B位置的推导不做介绍,但是计算量比较大,因此在微处理器中进行运算会占用大量资源,下面再介绍另一种优化的采样方法:规则采样法

规则采样法

根据载波PWM的电压极性,一般可以分为单极性SPWM和双极性SPWM;下面进一步介绍;

单极性

单极性SPWM在正弦波的正版周期,PWM只有一种极性,在正弦波的负半周期,PWM同样只有一种极性,但是与正半周期恰恰相反,具体如下图所示;

下面取正弦波的正半周期的情况进行分析;

单极性SPWM

正弦波的正半周期整体如下所示;由图中我们可以知道以下几点;

  • 载波PWM的周期为T
  • 线段BO为当前这个等腰三角形的垂线;
  • 线段BO与正弦曲线 相较于点A
  • 所以在该周期内,PWM所需要的脉冲时间宽度Ton满足:
单极性正半周期

具体的推导过程如下:

  • 第一步:由于O点的位置比较好确认,因此,线段

  • 第二步:这里载波锯齿波的最大幅值为1,因此线段

  • 第三步:根据初中学过的相似三角形定理,满足:

最终简化得到:

这里对载波的幅值做了归一化处理,如果锯齿波的最大值为,正弦波的幅值最大为,则;

双极性

只要符合面积等效原理,PWM还可以是双极性的,具体如下图所示;这种调制方式叫双极性SPWM,在实际应用中更为广泛。

双极性SPWM

如何编写程序

上面讲到这里PWM的时间满足:

其中为正弦波幅值,为载波锯齿波幅值;

那么下面以STM32为例,介绍以下如何进行程序编写;

首先得先STM32是如何产生PWM?

通过数据手册可以知道,STM32通过TIM输出PWM,这里有几个寄存器;

  • 计数寄存器:CNT
  • 比较寄存器:CCR (决定了占空比,决定了脉冲宽度)
  • 自动重装寄存器:AAR(决定了PWM的周期)

可能这么说,还是云里雾里的,先看下图;

STM32的PWM产生原理

STM32中PWM的模式有普通的PWM,和中央对齐的PWM,上图使用的就是中央对齐PWM;

产生PWM的过程可以分为以下几个过程;

  • 第一步:配置好TIM,通常时基和ARR都会配置好,这时候PWM的周期就已经被设定好了,另外时基决定了CNT计数寄存器增加一次技术所需的时间;
  • 第二步:刚开始,CNT,并且CNT开始增加,这时候PWM的输出都是低电平;当CNT>CCR之后,PWM输出为高电平;
  • 第三步:当CNT的值等于AAR之后,CNT开始减少,同理CNT,PWM的输出低电平;当CNT>CCR,PWM输出为高电平;
  • 第四步:循环上述三个步骤;

程序中如何实现?

从上述STM32产生PWM的过程中不难发现,满足;

上一节推导的公式如下:

结合①式和②式,可以得到:

上面公式中用CCR表示CCR寄存器中的值,ARR表示ARR寄存器中的值;

最后需要做的三件事

  • 计算出ARR,一般配置TIM定时器的时候能在数据手册找到公式;
  • 调制比,也就是的系数;
  • 根据③式生成正弦表,然后查表(实时计算因为涉及到较多运算量,所以利用查表,空间换时间,提高效率),利用PWM的事件去触发中断,更新下一次CCR的值

正弦函数表

const uint16_t indexWave[] = {
 0918273645546372818998,
 107116125133142151159168176,
 184193201209218226234242249,
 257265273280288295302310317
 324331337344351357364370376
 382388394399405410416421426
 431436440445449454458462465
 469473476479482485488491493
 496498500502503505506508509
 510510511512512512512512512,
 511510510509508506505503502,
 500498496493491488485482479,
 476473469465462458454449445
 440436431426421416410405399
 394388382376370364357351344
 337331324,  317310302295288280
 273265257249242234226218209
 201193184176168159151142133
    1251161079889817263544536,
    271890
};

中断服务函数:

extern uint16_t indexWave[];
extern __IO uint32_t rgb_color;

/* 呼吸灯中断服务函数 */
void BRE_TIMx_IRQHandler(void)

 static uint16_t pwm_index = 0;  //用于PWM查表
 static uint16_t period_cnt = 0;  //用于计算周期数
 static uint16_t amplitude_cnt = 0//用于计算幅值等级

 if (TIM_GetITStatus(BRE_TIMx, TIM_IT_Update) != RESET) //TIM_IT_Update
  {  
  amplitude_cnt++;

  //每个PWM表中的每个元素有AMPLITUDE_CLASS个等级,
  //每增加一级多输出一次脉冲,即PWM表中的元素多使用一次
  //使用256次,根据RGB颜色分量设置通道输出
  if(amplitude_cnt > (AMPLITUDE_CLASS-1)){  
   period_cnt++;

   //每个PWM表中的每个元素使用period_class次
   if(period_cnt > period_class){    
    
    //标志PWM表指向下一个元素
    pwm_index++;            

    //若PWM表已到达结尾,重新指向表头
    if( pwm_index >=  POINT_NUM){
     pwm_index=0;
    }
    //重置周期计数标志
    period_cnt = 0;
   }
   //重置幅值计数标志
   amplitude_cnt=0;           
  
  }else
   //每个PWM表中的每个元素有AMPLITUDE_CLASS个等级,
   //每增加一级多输出一次脉冲,即PWM表中的元素多使用一次
   //根据RGB颜色分量值,设置各个通道是否输出当前的PWM表元素表示的亮度
   //红
   if(((rgb_color&0xFF0000)>>16) >= amplitude_cnt) {
    //根据PWM表修改定时器的比较寄存器值
    BRE_TIMx->BRE_RED_CCRx = indexWave[pwm_index]; 
   }else{
    //比较寄存器值为0,通道输出高电平,该通道LED灯灭
    BRE_TIMx->BRE_RED_CCRx = 0;  
   }

   //绿
   if(((rgb_color&0x00FF00)>>8) >= amplitude_cnt){
    //根据PWM表修改定时器的比较寄存器值
    BRE_TIMx->BRE_GREEN_CCRx = indexWave[pwm_index]; 
   }else{
    //比较寄存器值为0,通道输出高电平,该通道LED灯灭
    BRE_TIMx->BRE_GREEN_CCRx = 0
   }   
   //蓝
   if((rgb_color&0x0000FF) >= amplitude_cnt){
    //根据PWM表修改定时器的比较寄存器值
    BRE_TIMx->BRE_BLUE_CCRx = indexWave[pwm_index]; 
   }else{
    //比较寄存器值为0,通道输出高电平,该通道LED灯灭 
    BRE_TIMx->BRE_BLUE_CCRx = 0;  
   }
   //必须要清除中断标志位
   TIM_ClearITPendingBit (BRE_TIMx, TIM_IT_Update); 
  }
 }
}

总结

本文简单介绍了SPWM的原理和调制方法,推导了SPWM的PWM脉冲宽度的计算时间,最后给出了基于STM32单片机产生SPWM驱动呼吸灯的部分代码,完整代码关注公众号私信发送SPWM获取

由于作者能力和水平有限,文中难免存在错误和纰漏,请不吝赐教。

—— The End ——



推荐阅读



  • 一篇很棒的C语言入门笔记,值得收藏!

  • 单片机I/O口驱动,为什么一般都选用三极管而不是MOS管?

  • 半桥电路的死区时间

  • 5分钟带你了解D类功放


后台回复加群,管理员拉你入技术交流群。

硬件笔记本 一点一滴,厚积薄发。
评论
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 51浏览
  • 概述 通过前面的研究学习,已经可以在CycloneVGX器件中成功实现完整的TDC(或者说完整的TDL,即延时线),测试结果也比较满足,解决了超大BIN尺寸以及大量0尺寸BIN的问题,但是还是存在一些之前系列器件还未遇到的问题,这些问题将在本文中进行详细描述介绍。 在五代Cyclone器件内部系统时钟受限的情况下,意味着大量逻辑资源将被浪费在于实现较大长度的TDL上面。是否可以找到方法可以对此前TDL的长度进行优化呢?本文还将探讨这个问题。TDC前段BIN颗粒堵塞问题分析 将延时链在逻辑中实现后
    coyoo 2024-12-10 13:28 102浏览
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 141浏览
  • 【萤火工场CEM5826-M11测评】OLED显示雷达数据本文结合之前关于串口打印雷达监测数据的研究,进一步扩展至 OLED 屏幕显示。该项目整体分为两部分: 一、框架显示; 二、数据采集与填充显示。为了减小 MCU 负担,采用 局部刷新 的方案。1. 显示框架所需库函数 Wire.h 、Adafruit_GFX.h 、Adafruit_SSD1306.h . 代码#include #include #include #include "logo_128x64.h"#include "logo_
    无垠的广袤 2024-12-10 14:03 71浏览
  • 智能汽车可替换LED前照灯控制运行的原理涉及多个方面,包括自适应前照灯系统(AFS)的工作原理、传感器的应用、步进电机的控制以及模糊控制策略等。当下时代的智能汽车灯光控制系统通过车载网关控制单元集中控制,表现特殊点的有特斯拉,仅通过前车身控制器,整个系统就包括了灯光旋转开关、车灯变光开关、左LED前照灯总成、右LED前照灯总成、转向柱电子控制单元、CAN数据总线接口、组合仪表控制单元、车载网关控制单元等器件。变光开关、转向开关和辅助操作系统一般连为一体,开关之间通过内部线束和转向柱装置连接为多,
    lauguo2013 2024-12-10 15:53 85浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 79浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 109浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 84浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 88浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 50浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 71浏览
我要评论
0