15+张图剖析内存分配之malloc详解

李肖遥 2021-12-07 22:05

关注、星标公众号,直达精彩内容

文章来源:技术让梦想更伟大

整理:李肖遥

前言

由于malloc()的源码十分的繁琐,并且会调用OS所提供的API,所以我不在对malloc()的源码进行分析了,而只是会分析malloc()的动作,这就已经足够了。

一、malloc()分配出的内存空间

在前边的文章中已经提及到了,当malloc()分配空间时,并不是要多少就分配多少,而是会额外的加上首部和尾部,其中一些较为简单的部分我会在这里进行解释,而较为重要的部分我会在本文下面的分析中逐步的完善。图片取自侯捷C++内存分配系列教程讲义

这张图片去除掉了上下两块cookie和下边的填补区pad。

浅绿色的fill是调用malloc()时向系统申请的内存,该函数返回时,也会返回这块区域开头的指针。这里申请了0x100 byte的内存.

fill上下两块gap预先被填充为了0xfdfdfdfd,用来分隔客户可以使用的内存区和不可使用的内存区,同时,当这块内存被归还时,编辑器也可以通过下gap的值区判断当前内存块是否被越界使用了。

上gap向上连续的7个内存空间共同组成了debug header,从上向下标号为1-7

  • 1、2两块空间保存了两根指针,目的是使多个内存块连接成链表。
  • 3空间保存了申请本内存块的文件名
  • 4- 空间保存了申请本内存块的代码行数
  • 5空间记录了本内存块中实际可以被用户使用的内存空间的大小
  • 6空间记录了当前内存块的流水号,即是链表中的第几个,从1开始
  • 7空间记录了当前内存块被分配的形式,后边会进行分析

二、内存分配

1.内存管理所用到的结构层次

首先,在进入程序之前,系统就已经分配出了一个结构去管理内存,我们先来看看这个结构

代码比较难看懂,我这里分析一下。

系统首先会调用__cdecl_heap_init()函数去分配一个堆空间,用在这里分配的堆空间去管理程序中会产生的动态分配内存的请求。而在__cdecl_heap_init()这个函数中,回去创建一个长度为16的类型为HEADER的链表,这个链表的每个节点将在以后的程序中去管理1MB的内存。

我们去看下这个链表的节点的结构:

这里需要重点关注的是两根指针:

  • 指针pHeapData将被指向这个header所管理的那1MB的内存空间的开头。
  • pRegion将会被指向一个管理用的结构,这个结构将会在下边展开

这张图对应了上边的关系

在这个图中显示的,pHeapData指向的是虚拟地址空间,没错,现在还是虚拟的,并没有为其分配内存,我们可以将他想象成门牌号的集合。这里只保存了门牌号,但是房子还没有建起来。这里以后将要分配的空间一共是1MB,将被分为32个32KB的内存段。

接下来我们详细去看pRegion所指向的结构,也就是tagRegion;

  • indGroupUse表示了当前会提供内存的group编号,从0开始

  • cntRegionSize[64]用64个字节去对应后边group所将会展开链表,当对应链表挂在有内存时,将会变成1.

  • bitvGroupHi和bitvGroupLo共同构成了一个的byteMap共64个byte(分为32组),将来用于对应每个group中所挂载的64条双向链表,当对应的位置挂载有内存时,会变成1.

  • grpHeadList就是32个group,每个group负责32KB

  • 这里的cntEntries代表当前链表中挂载的内存块被切分的次数

  • listHead对应64对指针,也就是形成了64条链表,用于挂载不同大小的内存块,间隔为16byte,最后一条链表将挂载所有大于等于1K的内存块

编号1就是上边所说的每grop中的那64条双向链表现在只有最后一条双向链表中挂载有内存页。

编号2是这个group所对应的那32K的内存段,将他分为了8份,每份就是4K,将这8个内存页串成链表,由于每一个内存页都大于1K,所以都将挂载在最后一条链表上。

当一切准备好,挂载的对应方式如下图:

  • 编号1是当前header所管理的1MB的空间,将其32等分,每一份的32KB由一个group去负责分配

  • 编号2是一个group所管理的32K的空间,将其分为8个4KB大小的内存页挂载于最后一条链表上

  • 编号3是分割好的内存页链表,他们被串成一个双向链表。

  • 编号4是一个group中的64条链表

2.内存页的划分

下面我们来看每个崭新的内存页的内容

这是一个4K大小的内存页:

  • 中间的空白区域代表了可共malloc()索取的4080byte的内存空间
  • 空白的最下边和红色的最上边,两个标有4080的空间是用来记录剩余可用空间大小的cookie
  • 剩余的两块红色部分是两根指针,指向链表中前边和后边的内存页
  • 黄色的标有0xfdfdfdfd的是两根分割区域,具体作用上边已经提及
  • 最上边的保留区域是为了让下边空白区域成为16byte的整数倍

内存页划分的规则

当申请一个内存空间时,首先先去符合的链表中寻找,如果链表中没有挂载内存块,就从编号较大的链表中最近的挂有内存块的链表中划分。

内存页被划分之后的情况

最左边原先是一个崭新的内存页(4K = ff0),然后我们从内存页中划分出0x130 byte的空间:

  • 编号为1的是被划分出的实际空间
  • 编号2是实际可以为用户所使用的实际空间,这个空间应该是0x100
  • 上下两根cookie记录了被划分出去的实际空间,至于为什么是0x131,之前的文章有提及
  • 内存被划分出去后,malloc()再对其进行复写,然后将实际空间交付给客户。

当这块内存被分配出去之后,原来内存页中的cookie = ff0-130 = ec0,此时仍然大于1KB,所以不用转移挂载的位置。

3.内存分配的动作

我们刚刚分配出了0x130的空间,我们先看看这个空间分配出去之后的动作

  • 编号1:此时由group0分配内存,所以Region 中的 indGroupUse被设置为0
  • 编号2:整个group的内存页被划分了一次,所以Group 中的 cntEntries被置为1
  • 编号3:此时group0只有最后一个链表空间上挂载了链表,所以Region 中对应的byte被置为1

此时page1中剩余空间为ec0 byte;

当某一次分配时,group0中没有比当前需求大的内存块了,此时就需要开辟另一个group去服务了

  • 编号1:由于当前是group1再分配内存,所以Region 中的 indGroupUse设置为1
  • 编号2:将group1中最后一条链表再bitMap中对应的位设置为1
  • 编号3:group1整个的内存页被划分了一次,所以Group 中的 cntEntries被置为1

此时再分配内存就会从group中去分配了

4.内存归还的动作

当多次连续分配之后,出现了一次归还空间的动作

  • 编号1:当前group分配出的内存块-1
  • 编号2:由于此次归还的内存大小为0x240应该挂载于第35号链表,所以将第35号链表对应的bite设为1(这里将byteMap中每四个byte写成了一个16进制数)
  • 编号3:当前还是group所分配内存,所以所以Region 中的 indGroupUse仍为0
  • 编号4:这时被归还的内存被复写,两个cookie从0x241变回0x240,表示没有被使用,两根指针连入35号链表。

三、将内存归还给OS

我们来探讨几个问题:

Q1、当多个group被启用时,怎么去寻找归还的内存属于哪个group?

答案很简单,夹杀法:我们知道每一个group对应内存的起始地址和结尾地址,我们只需要去判断被归还的指针中地址的大小是否在这二者之间,就能判断出是否属于当前的group。而去寻找所对应的header的方法也是如此。

Q2、怎么将内存还给操作系统?`

这里时malloc和之前讲过的分配器本质上的区别,我们能将收回的内存还给操作系统,具体步骤如下:

  1. 对于回收的连续的内存空间进行合并 这个实现时基于上下两个cookie的实现完成的

这里我们假设还的的1号空间,我们能看到 2、3两个空间的cookie结尾都是0,所以也是空闲的,也就是说这三块连续的空间可以合并。

向下合并:我们首先有一个指向1号空间的指针,他通过cookie可以知道自己有多大,所以下调对应的大小就可以到达2号空间的开头,查看2号空间的cookie可以知道他的大小,也可以知道它是空闲的,所以可以将他们两个合并。

向上合并:我们首先有一个指向1号空间的指针,他向上调整两个int的长度,可以到达3号空间的cookie,通过三号空间的cookie可以知道3号空间的大小,也可以知道3号空间是空闲的,所以就可以将他们两个合并。重复上边两个步骤,我们可以将相连的N块空闲内存全部合并,并计算大小调整连接位置。

  1. 判断分配的空间的全回收

这也很简单,我们再每个group都记录了分配出去的次数,每当我们回收的时候,就将这个值-1,所以当它再次为0的时候,就证明这个group的内存全部回收了。

  1. 当内存全回收之后的状态

由于有上边的合并机制,所以当一个group的内存全回收之后,他的状态就和最开始时一样,也就是最后一个链表上连接着8个4KB大小的内存块,这时我们就可以将他还给操作系统了。

Q3:当一个group全回收之后,我们需要将他立刻还给系统么?

答案肯定是否定的,因为如果我们全回收一个就还一个,那么当下一次在需要分配时,我们还需要重新分配。所以全回收的group不会立刻被还给系统,而是等待下一个全回收的group出现,就会将前一个group对应的内存free掉。

参考原文链接:https://blog.csdn.net/qq_34269632

‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧  END  ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧

关注我的微信公众号,回复“加群”按规则加入技术交流群。

欢迎关注我的视频号:

点击“阅读原文”查看更多分享,欢迎点分享、收藏、点赞、在看。

李肖遥 公众号“技术让梦想更伟大”,作者:李肖遥,专注嵌入式,只推荐适合你的博文,干货,技术心得,与君共勉。
评论
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 208浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 192浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 81浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 47浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 41浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 92浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 117浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 93浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 152浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 137浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 45浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 108浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 108浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 159浏览
我要评论
1
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦