分享一个好消息——达摩院成功研发存算一体芯片!
这是全球首款基于DRAM的3D键合堆叠存算一体芯片。它可突破冯·诺依曼架构的性能瓶颈,满足人工智能等场景对高带宽、高容量内存和极致算力的需求。在特定AI场景中,该芯片性能提升10倍以上,效能比提升高达300倍。
01为什么要研发存算一体芯片?
随着人工智能应用场景的爆发,现有的计算机系统架构的短板逐渐显露,例如功耗墙、性能墙、内存墙等问题。
其主要症结在于:
一是数据搬运带来了巨大的能量消耗。在传统架构下,数据从内存单元传输到计算单元需要的功耗是计算本身的约200倍,因此真正用于计算的能耗和时间占比很低。
二是内存的发展远远滞后于处理器的发展。目前,处理器的算力以每两年3.1倍的速度增长,而内存的性能每两年只有1.4倍的提升。后者的性能极大地影响了数据传输的速度,这也被认为是传统计算机的阿克琉斯之踵。
存算一体芯片是目前解决以上问题的最佳途径——它类似于人脑,将数据存储单元和计算单元融合为一体,大幅减少数据搬运,从而极大提高计算并行度和能效。
这一技术早在90年代就被提出,但受限于技术的复杂度、高昂的设计成本以及应用场景的匮乏,过去几十年业界对存算一体芯片的研究进展缓慢。如今,达摩院希望通过自研创新技术解决算力瓶颈这一业界难题。
此外,存算一体芯片在终端、边缘端以及云端都有广阔的应用前景。例如VR/AR、无人驾驶、天文数据计算、遥感影像数据分析等场景中,存算一体芯片都可以发挥高带宽、低功耗的优势。
从长远来看,存算一体技术还将成为类脑计算的关键技术。
02 实现存算一体的三种路线
实现存算一体有三种技术路线:
近存储计算(Processing Near Memory):计算操作由位于存储芯片外部的独立计算芯片完成。
内存储计算(Processing In Memory):计算操作由位于存储芯片内部的独立计算单元完成,存储单元和计算单元相互独立存在。
内存执行计算(Processing With Memory):存储芯片内部的存储单元完成计算操作,存储单元和计算单元完全融合,没有一个独立的计算单元。
其中,近存计算通过将计算资源和存储资源距离拉近,实现对能效和性能的大幅度提升,被认为是现阶段解决内存墙问题的最佳途径。达摩院本次也是沿着这一方向进行突破。
03 近存计算架构&3D混合键合
为了拉近计算资源和存储资源的距离,达摩院计算技术实验室创新性采用混合键合(Hybrid Bonding)的3D堆叠技术进行芯片封装——将计算芯片和存储芯片face-to-face地用特定金属材质和工艺进行互联。
比起业内常见的封装方案HBM,混合键合3D堆叠技术拥有高带宽、低成本等特点,被认为是低功耗近存计算的完美载体之一。
此外,内存单元采用异质集成嵌入式DRAM (SeDRAM),拥有超大内存容量和超大带宽优势。
同时在计算芯片方面,达摩院研发设计了流式的定制化加速器架构,对推荐系统进行“端到端”加速,包括匹配、粗排序、神经网络计算、细排序等任务。
这种近存架构有效解决了带宽受限的问题,最终内存、算法以及计算模块的完美融合,大幅提升带宽的同时还实现了超低功耗,展示了近存计算在数据中心场景的潜力。
最终的测试芯片显示,这种存算技术和架构的优势明显:
能通过拉近存储单元与计算单元的距离增加带宽,降低数据搬运的代价,缓解由于数据搬运产生的瓶颈,而且与数据中心的推荐系统对于带宽/内存的需求完美匹配。
得益于技术的创新性,该芯片的研究成果已被芯片领域顶级会议ISSCC 2022收录。
未来,达摩院希望能进一步攻克存内计算技术,并逐步优化典型应用、生态系统等方面。
来源:芯榜
免责声明:本文版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容!本文内容为原作者观点,并不代表本公众号赞同其观点和对其真实性负责。
为您发布产品,请点击“阅读原文”