微显示科普 | 一文看懂微显示技术MicroLED、硅基OLED、LCOS、LCD、DLP......

BOE知识酷 2021-11-26 13:25

知识酷 👆
显示技术 | 显示资讯 | 知识管理


第1158篇推文


微显示器是具有微型屏幕尺寸和分率的小型化显示单元,又称为微型平面显示面板。通常指对角线尺寸小于1英寸(2.54厘米)的显示器,常被用于光学引中,其生成的图像作为光学系统图像的来源。它们的小尺寸使其可以用于需要占用较小空间的屏幕的各种应用中,例如头戴式显示器和数码相机。它们还广泛用于背投电视和数据投影仪中。
图1:显示器技术应用 数据来源: IDTECHEX
微显示器可以通过一系列显示技术制造,主流技术包括:硅基液晶(LCOS)、液晶显示器(LCD)、数字微镜器件(DMD)、数字光处理(DLP)、硅基OLED( OLEDOS)、Micro LED等。
主流显示器技术比较
数据来源: Sigmaintell, Oedia,语、新通讯、广发证券发展研究中心(备注:硅基OLED国内厂家还有京东方、湖畔、梦显等等,上述表格列出仅供参考)
(一)硅基液晶技术(LCOS)
硅基液晶LCOS( Liquid Crystal on Silicon)是LCD与CMOS集成电路有机结合的反射型新型显示技术。其结构是在硅片上,利用半导体制程制作驱动面板,然后在电晶体上透过研磨技术磨平,并镀上铝当作反射镜,形成CMOS基板,然后将CMOS基板与TO导电玻璃上基板贴合,再注入液晶,进行封装测试。
图2:LCOS结构  数据来源: Ofweek,广发证券发展研究中心
LCOS技术利用的是液晶分子自身的双折射特性,藉由电路的开关以推动液晶分子的旋转,对入射光线的偏振进行调制。当液晶层像素的外加电压为零时,入射的S偏振光经过液晶层,其偏正方向不产生担转,达到底部金属反射层反射回来时仍为S偏振光,穿过液晶层射出。随后经过PBS棱镜反射回到原来光路,在这种情况下,光线不进入投影光路,没有光输出,即此像素呈现“暗态”。反之,当像素存在外加电压时,入射的S偏振光在经过液晶层时,偏振方向将发生偏振,当其经金属反射层反射,再出穿过液晶层时将变为P偏振光。这東P偏振光在穿过PBS棱镜是,将进入投影光路,在屏幕上显示成像,即呈现“亮态”。施加在像素两端电压的大小将影响液晶分子的光通性能,进而决定该像素的显示灰阶。
三片式LCOS投影原理 数据来源:我爱原理网,广发证券发展研究中心
LCOS面板最大的特色在于下基板的材质是单晶硅,因此拥有良好的电子移动率而且单晶硅可形成较细的线路。其次,LCOS为反射式技术,不会像 HTPS LCD光学引擎会因为光线穿透面板而大幅降低光利用率,因此光利率率可提高至40%,与穿透式的 HTPS LCD的3%相较,可减少耗电,并可产生较高的亮度。最后,其成本较低。LCOS光学引擎因为产品零件简单,可利用目前广泛使用、便宜的CMOS制作技术来生产,需额外的投资,因此具有低成本的优势。并可随半导体制程快速的微细化,逐步提高解析度。
(二)液晶显示器技术(LCD)
LCD( Liquid Crystal Display)即液晶显示器,其构造是在两片平行的玻璃基板当中放置液晶体,下基板玻璃上设置TFT(薄膜体管),上基板玻璃上设置彩色滤光片,通过TFT上的信号与电压改变来控制液晶分子的转动方向,从而达到控制每个像素点偏振光出射与否而达到显示目的。
图4:LCD结构 数据来源: bbsmax,广发证券发展研究中心
LCD技术最大的优势是其制造エ艺十分成熟,成本较低,并且使用寿命较长。然而LCD通常用穿透式投射的方式,光利用效率低,解析度不易提高。并且LCD在显示黑色时无法关闭背光源,而是通过液晶分子阻挡光线,因此会表现出一种灰白色这一特点也导致了LCD对比度低的劣势。
(三) 数字光处理技术(DLP)
数字光处理DLP( Digital Light Processing)投影系统的核心是数字微设备芯片DMD( Digital Micromirror Device)。DMD是一块通常有多达130万个铰接安装的米级微镜组成的矩形阵列,一个微镜对应一个像素。DMD面上的微镜安装在极小的链上,在DLP投影系统中,微镜向光源倾时,光反射到镜头上,相当于光开关的“开状态。当微镜向光源反方向倾斜时,光反射不到镜头上,相当于光开关的“关”状态。镜每秒“开”或“关”几千次,当微镜开的次数比“关”的次数多时,反射得到的是一个有灰度级的亮像素,反之,反射得到的是一个有灰度级的较暗像素。

图5:DMD结构 数据来源:德州仪器,广发证券发展研究中心

图6:DLP投影技术原理 数据来源:德州仪器,广发证券发展研究中心
DLP由于以镜片为基础,提高了光通效率,因此DLP投影系统比所有其他显示系统具有更强的亮度。然而,由于其设计难度大、生产成本高、体积大等劣势,目前主要使用于投影机市场。
(四)硅基OLED( OLEDos)
硅基OLED微型显示器是结合CMOSエ艺和OLED技术,以单晶硅作为有源驱动背板而制作的主动式有机发光二极管显示器件。硅基OLED器件结构包括驱动背板和OLED器件两个部分。驱动背板应用标准的CMOSエ艺制作,形成硅基OLED微显需要的像素电路、行列驱动电路以及其他的功能电路。在CMOS电路的顶层金属中通常制作高反射的金属,作为OLED器件的阳极。OLED器件部分通常包括空穴注入层空穴传输层、发光层、电子传输层、电子注入层、半透明的顶电极。在顶电极上制作薄膜封裝层,用于阻隔水氧,接着旋涂透明贴合胶层,贴合玻璃进行器件强度保护。

图7:硅基OLED结构 数据来源: Semantic Scholar,广发证券发展研究中心
硅基OLED采用成熟的集成电路CMOSエ艺,并结合了OLED快速响应、大视角、低功耗等突出优点,不但实现显示屏像素的有源寻址矩阵,还实现了如SRAM存储器TCON等多种功能的驱动控制电路,减少了器件的外部连线,増加了可靠性,实现了轻量化,像素尺寸为传统显示器件的1/10,精细度高于传统器件。但是硅基OLED亮度低、制造成本高,目前多使用于VR显示以及AR显示。
与LCOS相比硅基OLED 亦具有不少优点:
1 ) 低功耗,比 LCD 功耗小 20%,电池重量可以更轻。
2) 工作温度宽,LCD 不能在极端温度如 0℃下工作,必须额外加热元件,而在高温下又必 须使用冷却系统,所有这些解决方案都会增加整个显示器的重量、体积和功耗。而 OLED 为全固态器件,不需要加热和冷却就可以工作在-46℃~+70℃的温度范围内。
3 ) 高对比度,LCD 使用内置背光源,其对比度为 60:1,而 OLED 微显示器的对比度可以 达到 10,000:1。
4) 响应速度快,OLED 像素更新所需时间小于 1μs,而 LCD 的更新时间通常为 10~15ms, 相差了 1,000 到 1,500 倍,OLED 的显示画面更流畅从而减小视疲劳。
从未来市场角度来看:2021 年全球硅基OLED 在中国产商推波助澜下开始放量,预计 2021-2027 年出货量实现 CAGR 65.21% 的增长。
 硅基OLED 工艺制程
硅基OLED 是 CMOS 技术与 OLED 技术的紧密结合,是无机半导体材料与有机半导体材 料的高度融合。CMOS 技术主要使用光刻工艺、CMP 工艺等,湿法制成较多,而 OLED 技 术则主要采用真空蒸镀技术工艺,以干法制程为主。两者皆专业且复杂,将两者集成于同 一器件之中,对于工艺技术要求非常严苛。
硅基OLED 器件制造主要通过以下四个步骤实现:
1)硅基 IC 设计与制造:主要涉及集成电路的设计和制造,分别由 IC 设计团队和 foundry 厂完成;
2)OLED 制程:主要包括 OLED 微腔顶发射技术,阳极材料技术,全彩化技术等;
3)OLED 封装制程:包括薄膜封装,玻璃 cover 贴合封装等;
4)显示驱动与系统:与第一部分设计制造紧密相连。
硅基 OLED 微显示器传统制程。a 为器件结构截面示意图,b 是制造流程。其 中流程 1~7 为大片制造。从流程 8 切割后,即为 dice 制造流程。流程 1 为硅基芯片的制 造过程,由集成电路晶圆代工厂按照客户的设计和要求进行生产制造;流程 2~7 为 OLED 的制造流程,在 OLED 工艺代工厂制作完成。其中,流程 2 和 3 为像素阳极的制备过程, 包括阳极材料的成膜及其图案化,涉及较多湿法制程。在传统的硅基 OLED 微显示器制造 工艺中,该制程由 OLED 工厂来制作完成;流程 8~9 由集成电路芯片封装厂完成;流程 10 为模组与系统开发,将硅基 OLED 制作成微显示器模组供用户使用。

硅基OLED 制造设备涉及微电子和光电子制造设备。其中阳极制造需要金属溅射成膜设 备,阳极图案化则涉及晶圆清洗设备、光刻胶涂覆设备、曝光设备、显影去胶设备、烘烤 等设备,这些均属半导体设备。OLED 制程段则需要 OLED 蒸镀设备、薄膜封装设备以及 玻璃贴合封装设备等,这些设备集成为一套系统,在一系列真空和惰性气体气氛内完成。
硅基OLED 器件结构
硅基OLED 显示器件以单晶硅作为衬底,在单晶硅衬底上采用标 准的 CMOS 工艺制作显示驱动电路,以提供 OLED 显示所需的像素驱动部分、行列驱动部 分以及其它所需的 DAC 转换等功能电路。在单晶硅衬底上接着制作 OLED 发光单元,由于 硅片衬底不透明,需要制作顶发射 OLED 器件。首先在衬底上,制作高反射率的金属作为 阳极,阳极电极具有较高的反射率可以实现较高的出光效率。接着制作空穴注入层、空穴 传输层、发光层、电子传输层、电子注入层等有机半导体层,形成 OLED 主体发光单元。最后,为了实现光从顶部出射,需要制作半透明的金属层作为阴极。由于OLED 器件怕水 氧等破坏,在阴极上需要制作薄膜封装层,用于阻隔水氧,在封装层上,进一步贴合玻璃 进行器件强度保护。
驱动芯片架构:驱动芯片采用 0.18μm的 CMOS 工艺设计,驱动背板包括像素电路、行列 驱动、DAC、I2C、数据处理、电源模块、温度检测等功能模块。芯片采用 数字接口,针对高分辨率的应用要求,利用数据采样与比较完成数据传输,驱动芯片像素 采用电压型驱动方式。由于 OLED 器件在不同的温度条件下,器件亮度变化较大,因此在 芯片中集成了温度传感模块,可以实时监测芯片工作温度,实现芯片在高低温下精确调节 电压输出,来调节器件的显示亮度,保持器件显示的稳定和一致。硅基 OLED 器件包括控 制电路芯片部分和显示驱动芯片部分,为了方便用户使用芯片,在驱动芯片中集成了三路 电源模块,包括正压 DC-DC 模块、负压 DC-DC 模块和 LDO 模块。这三路电源模块,可 分别实现给像素整列、OLED 显示的公共阴极和芯片中的控制电路供电。
(五) Micro LED
 Micro LED即LED微缩技术,是指将传统LED阵列化、徽缩化后定址巨量转移到电路基板上,形成超小间距LED,将毫米级别的LED长度进一步微缩到微米级,以达到超高像素、超高解析率。
图8: Micro LED技术 数据来源:Sigmaintell
 Micro LED被视为下一代微显示器技术、 Micro LED显示器不需要大面积的基板进行光刻或蒸发,也不需要一个复杂的过程来转换颜色和防止亮度降低。从理论上讲, Micro LED可以很简单,成本更低,画面性能更高。
虽然Micro LED成为显示界的当红辣子鸡,但是其商业化进程还是比较缓慢。

最关键的是,Micro LED 显示器模块的制造工艺尚未实现类似于 LCD 或 OLED 的标准化,并且每个制造商都在开发自己的独特工艺和产品技术。这使 Micro LED 显示器制造工艺复杂、品种繁多。

此外,设备和工具都是定制的,成本很高。同时,参与制造工艺的公司很多,包括 Micro LED 外延片制造商、PCB/LTPS 制造商、批量转移制造商、驱动器集成电路(IC)制造商、机柜组装制造商、模块化制造商和OEM/ODM制造商。涉及的制造商越多,转型成本就越高。

换句话说,Micro LED 显示器的高成本是由以下四个因素造成的:

  • 复杂的生产工艺
  • 工艺和设备标准化程度低
  • 多个供应链参与者
  • 良品率管理和产量不成熟、不稳定

Micro LED 显示器模块工艺可以按照以下步骤排序:

  • Micro LED 部件

  • 外延片的矽晶锭
  • Micro LED芯片分割
  • 中介层上的倒装芯片 Micro LED

  • 背板和批量转移

  • LTPS/PCB 背板
  • 批量转移 (从中介层上的Micro LED到背板 )
  • Micro LED 芯片检修

  • 模块化

  • IC 键合
  • 模块组装
  • 检修

图 5:Micro LED 显示器模块制造工艺
来源:Omdia,三星 ─ 照片由 Park Ken/Omdia 在 2020 年 1 月内华达州拉斯维加斯的“2020 年消费电子展(CES)”拍摄

这些工艺存在四个主要的挑战和技术问题:

  • Micro LED 芯片和结构:Micro LED 芯片结构比传统LED更为复杂。

  • 背板:TFT 背板设计比一般的TFT更为复杂。

  • 批量转移工艺:存在许多可选的批量转移工艺,例如静电转移、电磁转移、激光转移、印模转移、整体转移、射流转移、逐一固晶转移和可拉伸巨量转移,每一种都有其优缺点。

  • 检修:如有必要,需要对每个 Micro LED 芯片组进行检修。因为有数百万甚至数千万个亚像素,即使良品率达到 99.99%,仍需修复存在缺陷的 Micro LED 芯片组。检修非常耗时。

图 6:Micro LED 制造挑战和技术问题


来源:广发证券、Omdia、MicroDisplay综合整理

欢迎关注:知识酷Pro
BOE知识酷 欢迎加入知识酷Pro,分享显示行业知识、最新黑科技、办公软件技巧等。
评论
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 221浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 360浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 150浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 49浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 179浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 181浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 73浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 195浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 405浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 30浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 121浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 161浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 111浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 95浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦