自动驾驶汽车中的激光雷达和摄像头传感器融合

原创 汽车电子与软件 2021-11-24 07:57
传感器融合是自动驾驶汽车的关键技术之一。这是自动驾驶汽车工程师都必须具备的技能。原因很简单:感知无处不在,无时无刻不在使用。
自动驾驶汽车通过4个关键技术工作:感知、定位、规划和控制。



传感器融合是感知模块的一部分。我们希望融合来自视觉传感器的数据,以增加冗余、确定性或利用多个传感器的优势。

传感器数据和融合

在感知步骤中,使用激光雷达、雷达和摄像头的组合来理解环境是很常见的。这3个传感器各有优缺点,使用它们可以帮助您拥有所有优点。



如上图所示:
  • 摄像头擅长处理对象分类及理解场景。
  • 作为一种飞行时间传感器,激光雷达非常适合估计距离。
  • 雷达可以直接测量障碍物的速度。
在本文中,我们将学习融合激光雷达和摄像头,从而利用摄像头的分辨率、理解上下文和对物体进行分类的能力以及激光雷达技术来估计距离并查看3D世界。


摄像头:2d传感器

相机是一种众所周知的传感器,用于输出边界框、车道线位置、交通灯颜色、交通标志和许多其他东西。在任何自动驾驶汽车中,摄像头从来都不是问题。



如何使用这种2D传感器,并将其与3D传感器(如:激光雷达)一起应用于3D世界?


激光雷达:3d传感器

激光雷达代表光检测和测距。它是一个3D传感器,输出一组点云;每个都有一个(X,Y,Z)坐标。可以在3D数据上执行许多应用:包括运行机器学习模型和神经网络。下面是一个输出示例。


如何将此3D传感器与相机等2D传感器配合使用?
今天,我们介绍融合激光雷达和相机之间的数据。


传感器融合算法

传感器融合算法非常多。许多不同的方法都是可能的。“我们想要哪种类型的融合?”至关重要。
文章所属,有3种方式来对融合算法分类:
  • 按抽象级别:“何时”进行融合?when
  • 按中心化级别:在“哪里”进行融合?where
  • 按竞争级别:融合“什么”?what
“什么”很清楚:我们的目标是竞争和冗余。“在哪里”并不重要,很多解决方案都可以解决。剩下“何时”...
在传感器融合中,有两种可能的过程:
  • 早期融合:融合原始数据--像素和点云。
  • 后期融合:融合结果--来自激光雷达和相机的边界框。
在本文中,我们将研究这两种方法。
We then check whether or not the point clouds belong to 2D bounding boxes detected with the camera.
This 3-step process looks like this:
我们从早期融合开始。


早期传感器融合:融合原始数据

早期融合是融合来自传感器的原始数据的。因此,一旦插入传感器,该过程就会很快的发生。
最简单和最常见的方法是将点云(3D)投影到2D图像上。然后检查点云和相机检测到的2D边界框的重合度。
这个3步过程如下所示:


此过程已在此文中归类为低级别传感器融合。


1.点云投影到2D

第一个想法是将激光雷达帧中的3D点云转换为相机帧中的2D投影。为此,需要应用几何原理如下:
(输入点云在激光雷达帧/欧几里得坐标中。)
  1. 将每个3D激光雷达点转换为齐次坐标。
    输出:激光雷达帧/齐次坐标
  2. 应用该转换点的投影方程(平移和旋转)将该点从激光雷达帧转换为相机帧。
    输出:相机帧/齐次坐标
  3. 最后,将点转换回欧几里得坐标。
    输出:相机帧/欧几里得坐标
如果不熟悉投影、旋转和齐次坐标,可以学习立体视觉课程
这是第1步的结果。



2.2D对象检测

下一部分是用相机检测物体。这部分不过多描述,像YOLOv4这样的算法可以执行对象检测。有关它的更多信息,可以阅读YOLOv4研究评论


3.ROI匹配

最后一部分称为感兴趣区域匹配。我们将简单地融合每个边界框内的数据。
输出是什么?
  • 对于每个边界框,相机给出分类结果。
  • 对于每个激光雷达投影点,都有一个非常准确的距离。
➡️ 因此,我们得到了准确测量和分类的物体。
可能会出现一个问题:我们选择哪一点作为距离?
  • 每个点的平均值?
  • 中位数?
  • 中心点?
  • 最近的?
使用2D障碍物检测时,会遇到如下问题。如果我们选择的点属于另一个边界框怎么办?或者属于背景?这是一个棘手的过程。分割方法可能会更好,因为将点与像素精确匹配。
下面是结果的样子,箭头显示融合可能失败的点。


后期传感器融合:融合结果

后期融合是在独立检测后融合结果。
我们可以想到的一种方法是运行独立检测,在两端获得3D边界框,然后融合结果。
另一种方法是运行独立检测,得到两端的2D边界框,然后融合结果。
因此我们有两种可能;在2D或3D中进行融合。
下面是一个2D示例:



在本文中,我将介绍3D过程,因为它更难。相同的原则适用于2D。
过程如下所示:



1.3D障碍物检测(激光雷达)

使用激光雷达在3D中寻找障碍物的过程是众所周知的。有两种方法:
  • 朴素的方法,使用无监督的3D机器学习。
  • 深度学习方法,使用RANDLA-NET等算法。
激光雷达课程这两种方法都有讲。


2.3D障碍物检测(相机)

这个过程要困难得多,尤其是在使用单目相机时。在3D中寻找障碍物需要我们准确地知道我们的投影值(内在和外在校准)并使用深度学习。如果我们想获得正确的边界框,了解车辆的大小和方向也至关重要。
本文是关于融合的文章,不介绍检测部分。可以查看文章
最后,关注一下匹配。
Here's an example coming from the paper 3D Iou-Net (2020) .


3.IOU匹配

空间中的IOU匹配

匹配背后的过程非常简单:如果来自摄像头和激光雷达的边界框在2D或3D中重叠,我们认为障碍是相同的。
下面是来自论文3D Iou-Net(2020)的示例。



利用这个想法,我们可以将空间中的物体关联起来,从而在不同的传感器之间进行关联。



此过程在文章中归类为中级别传感器融合。
中级传感器融合和高级传感器融合的区别在于高级传感器的融合包括跟踪。
要添加时间跟踪,我们需要一个称为时间关联的类似过程。

时间上的IOU匹配

障碍物追踪 课程中,讲了一种使用卡尔曼滤波器和匈牙利算法从帧到帧在时间上关联对象的技术。结果使我们能够在帧之间跟踪对象,甚至预测它们的下一个位置。
如下所示:



IOU匹配的原理完全一样:如果从第一帧到第二帧的边界框重叠,我们认为这个障碍物是相同的。
此处,我们跟踪边界框位置并使用IOU(Intersection Over Union)作为指标。我们还可以使用深度卷积特征来确保边界框中的对象是相同的--我们将此过程称为SORT(简单在线实时跟踪),如果使用卷积特征,则称为深度SORT。
由于我们可以在空间和时间中跟踪对象,因此我们还可以在这种方法中使用完全相同的算法进行高级传感器融合。


总结

我们现在已经研究了激光雷达和相机融合的两种方法。
让我们总结一下我们学到的东西:
传感器融合过程是关于融合来自不同传感器的数据,此处是激光雷达和摄像头。
可以有早期或后期融合--早期融合(低级传感器融合)是关于融合原始数据。后期融合是关于融合对象(中级传感器融合)或轨迹(高级传感器融合)
在做早期传感器融合时,要做点云和像素或者框的关联。
在进行后期传感器融合时,我们想要做结果(边界框)之间的关联,因此有诸如匈牙利算法和卡尔曼滤波器之类的算法来解决它。

阅读原文,关注作者知乎


END
汽车电子与软件 主要介绍汽车电子软件设计相关内容,每天分享一篇技术文章!
评论 (0)
  • 4月22日下午,备受瞩目的飞凌嵌入式「2025嵌入式及边缘AI技术论坛」在深圳深铁皇冠假日酒店盛大举行,此次活动邀请到了200余位嵌入式技术领域的技术专家、企业代表和工程师用户,共享嵌入式及边缘AI技术的盛宴!1、精彩纷呈的展区产品及方案展区是本场活动的第一场重头戏,从硬件产品到软件系统,从企业级应用到高校教学应用,都吸引了现场来宾的驻足观看和交流讨论。全产品矩阵展区展示了飞凌嵌入式丰富的产品线,从嵌入式板卡到工控机,从进口芯片平台到全国产平台,无不体现出飞凌嵌入式在嵌入式主控设备研发设计方面的
    飞凌嵌入式 2025-04-28 14:43 140浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 169浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 182浏览
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 176浏览
  • 文/郭楚妤编辑/cc孙聪颖‍越来越多的企业开始蚕食动力电池市场,行业“去宁王化”态势逐渐明显。随着这种趋势的加强,打开新的市场对于宁德时代而言至关重要。“我们不希望被定义为电池的制造者,而是希望把自己称作新能源产业的开拓者。”4月21日,在宁德时代举行的“超级科技日”发布会上,宁德时代掌门人曾毓群如是说。随着宁德时代核心新品骁遥双核电池的发布,其搭载的“电电增程”技术也走进业界视野。除此之外,经过近3年试水,宁德时代在换电业务上重资加码。曾毓群认为换电是一个重资产、高投入、长周期的产业,涉及的利
    华尔街科技眼 2025-04-28 21:55 147浏览
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 198浏览
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 234浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 205浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 243浏览
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 204浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 186浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦