自动驾驶汽车中的激光雷达和摄像头传感器融合

原创 汽车电子与软件 2021-11-24 07:57
传感器融合是自动驾驶汽车的关键技术之一。这是自动驾驶汽车工程师都必须具备的技能。原因很简单:感知无处不在,无时无刻不在使用。
自动驾驶汽车通过4个关键技术工作:感知、定位、规划和控制。



传感器融合是感知模块的一部分。我们希望融合来自视觉传感器的数据,以增加冗余、确定性或利用多个传感器的优势。

传感器数据和融合

在感知步骤中,使用激光雷达、雷达和摄像头的组合来理解环境是很常见的。这3个传感器各有优缺点,使用它们可以帮助您拥有所有优点。



如上图所示:
  • 摄像头擅长处理对象分类及理解场景。
  • 作为一种飞行时间传感器,激光雷达非常适合估计距离。
  • 雷达可以直接测量障碍物的速度。
在本文中,我们将学习融合激光雷达和摄像头,从而利用摄像头的分辨率、理解上下文和对物体进行分类的能力以及激光雷达技术来估计距离并查看3D世界。


摄像头:2d传感器

相机是一种众所周知的传感器,用于输出边界框、车道线位置、交通灯颜色、交通标志和许多其他东西。在任何自动驾驶汽车中,摄像头从来都不是问题。



如何使用这种2D传感器,并将其与3D传感器(如:激光雷达)一起应用于3D世界?


激光雷达:3d传感器

激光雷达代表光检测和测距。它是一个3D传感器,输出一组点云;每个都有一个(X,Y,Z)坐标。可以在3D数据上执行许多应用:包括运行机器学习模型和神经网络。下面是一个输出示例。


如何将此3D传感器与相机等2D传感器配合使用?
今天,我们介绍融合激光雷达和相机之间的数据。


传感器融合算法

传感器融合算法非常多。许多不同的方法都是可能的。“我们想要哪种类型的融合?”至关重要。
文章所属,有3种方式来对融合算法分类:
  • 按抽象级别:“何时”进行融合?when
  • 按中心化级别:在“哪里”进行融合?where
  • 按竞争级别:融合“什么”?what
“什么”很清楚:我们的目标是竞争和冗余。“在哪里”并不重要,很多解决方案都可以解决。剩下“何时”...
在传感器融合中,有两种可能的过程:
  • 早期融合:融合原始数据--像素和点云。
  • 后期融合:融合结果--来自激光雷达和相机的边界框。
在本文中,我们将研究这两种方法。
We then check whether or not the point clouds belong to 2D bounding boxes detected with the camera.
This 3-step process looks like this:
我们从早期融合开始。


早期传感器融合:融合原始数据

早期融合是融合来自传感器的原始数据的。因此,一旦插入传感器,该过程就会很快的发生。
最简单和最常见的方法是将点云(3D)投影到2D图像上。然后检查点云和相机检测到的2D边界框的重合度。
这个3步过程如下所示:


此过程已在此文中归类为低级别传感器融合。


1.点云投影到2D

第一个想法是将激光雷达帧中的3D点云转换为相机帧中的2D投影。为此,需要应用几何原理如下:
(输入点云在激光雷达帧/欧几里得坐标中。)
  1. 将每个3D激光雷达点转换为齐次坐标。
    输出:激光雷达帧/齐次坐标
  2. 应用该转换点的投影方程(平移和旋转)将该点从激光雷达帧转换为相机帧。
    输出:相机帧/齐次坐标
  3. 最后,将点转换回欧几里得坐标。
    输出:相机帧/欧几里得坐标
如果不熟悉投影、旋转和齐次坐标,可以学习立体视觉课程
这是第1步的结果。



2.2D对象检测

下一部分是用相机检测物体。这部分不过多描述,像YOLOv4这样的算法可以执行对象检测。有关它的更多信息,可以阅读YOLOv4研究评论


3.ROI匹配

最后一部分称为感兴趣区域匹配。我们将简单地融合每个边界框内的数据。
输出是什么?
  • 对于每个边界框,相机给出分类结果。
  • 对于每个激光雷达投影点,都有一个非常准确的距离。
➡️ 因此,我们得到了准确测量和分类的物体。
可能会出现一个问题:我们选择哪一点作为距离?
  • 每个点的平均值?
  • 中位数?
  • 中心点?
  • 最近的?
使用2D障碍物检测时,会遇到如下问题。如果我们选择的点属于另一个边界框怎么办?或者属于背景?这是一个棘手的过程。分割方法可能会更好,因为将点与像素精确匹配。
下面是结果的样子,箭头显示融合可能失败的点。


后期传感器融合:融合结果

后期融合是在独立检测后融合结果。
我们可以想到的一种方法是运行独立检测,在两端获得3D边界框,然后融合结果。
另一种方法是运行独立检测,得到两端的2D边界框,然后融合结果。
因此我们有两种可能;在2D或3D中进行融合。
下面是一个2D示例:



在本文中,我将介绍3D过程,因为它更难。相同的原则适用于2D。
过程如下所示:



1.3D障碍物检测(激光雷达)

使用激光雷达在3D中寻找障碍物的过程是众所周知的。有两种方法:
  • 朴素的方法,使用无监督的3D机器学习。
  • 深度学习方法,使用RANDLA-NET等算法。
激光雷达课程这两种方法都有讲。


2.3D障碍物检测(相机)

这个过程要困难得多,尤其是在使用单目相机时。在3D中寻找障碍物需要我们准确地知道我们的投影值(内在和外在校准)并使用深度学习。如果我们想获得正确的边界框,了解车辆的大小和方向也至关重要。
本文是关于融合的文章,不介绍检测部分。可以查看文章
最后,关注一下匹配。
Here's an example coming from the paper 3D Iou-Net (2020) .


3.IOU匹配

空间中的IOU匹配

匹配背后的过程非常简单:如果来自摄像头和激光雷达的边界框在2D或3D中重叠,我们认为障碍是相同的。
下面是来自论文3D Iou-Net(2020)的示例。



利用这个想法,我们可以将空间中的物体关联起来,从而在不同的传感器之间进行关联。



此过程在文章中归类为中级别传感器融合。
中级传感器融合和高级传感器融合的区别在于高级传感器的融合包括跟踪。
要添加时间跟踪,我们需要一个称为时间关联的类似过程。

时间上的IOU匹配

障碍物追踪 课程中,讲了一种使用卡尔曼滤波器和匈牙利算法从帧到帧在时间上关联对象的技术。结果使我们能够在帧之间跟踪对象,甚至预测它们的下一个位置。
如下所示:



IOU匹配的原理完全一样:如果从第一帧到第二帧的边界框重叠,我们认为这个障碍物是相同的。
此处,我们跟踪边界框位置并使用IOU(Intersection Over Union)作为指标。我们还可以使用深度卷积特征来确保边界框中的对象是相同的--我们将此过程称为SORT(简单在线实时跟踪),如果使用卷积特征,则称为深度SORT。
由于我们可以在空间和时间中跟踪对象,因此我们还可以在这种方法中使用完全相同的算法进行高级传感器融合。


总结

我们现在已经研究了激光雷达和相机融合的两种方法。
让我们总结一下我们学到的东西:
传感器融合过程是关于融合来自不同传感器的数据,此处是激光雷达和摄像头。
可以有早期或后期融合--早期融合(低级传感器融合)是关于融合原始数据。后期融合是关于融合对象(中级传感器融合)或轨迹(高级传感器融合)
在做早期传感器融合时,要做点云和像素或者框的关联。
在进行后期传感器融合时,我们想要做结果(边界框)之间的关联,因此有诸如匈牙利算法和卡尔曼滤波器之类的算法来解决它。

阅读原文,关注作者知乎


END
汽车电子与软件 主要介绍汽车电子软件设计相关内容,每天分享一篇技术文章!
评论
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 102浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 48浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 111浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 195浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 140浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 115浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 55浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 214浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 56浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 160浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 87浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦