USART波特率 vs SPI速率

strongerHuang 2019-11-18 21:00
本文主要结合STM32,讲述UART和SPI有关速率相关的知识。





1.串口和SPI内部时钟

在回答上面问题之前,需要先了解STM32内部时钟的概念,尤其是串口和SPI的内部时钟。


STM32里包含有系统时钟、AHB时钟和APB时钟。APB时钟来源于AHB,AHB时钟来源于系统时钟。



从上图中可以看出,时钟就像流水一样,从时钟源汇聚到系统时钟上,再从系统时钟继续分频或者说是继续分发到AHB、APB。


通常我们谈论的MCU能跑到多少M、主频多少M,其实所指的就是系统时钟。


这些时钟在不同的STM32系列中是不一样的,我们以STM32F401为例,手册上说它的APB1的最高时钟是42MHzAPB2的最高时钟是84MHz,不同的外设因为挂在不同的总线上,所以速度就不太相同了。比如USART1挂在APB2上,所以它的时钟最高就是84MHz, USART2是挂在APB1上,它的总线时钟最快就是42MHz当我们配置串口的时候会发现,USART2的 baudrate 最高是2.625Mbit/s,但是同样配置的USART1却可以达到5.25Mbit/s,这就是因为所在的总线时钟的不同而不同。


那我们怎么知道使用的USART1、USART2到底挂在哪条总线上呢?去从数据手册里寻找,直接在手册里搜索关键词APB1或者APB2就可以快速找到列表。

2.串口的过采样技术规范

比如说做数据的接收,我们可以看到串口是通过过采样技术来实现对数据的接收,因为它没有时钟线,只能通过高于波特率的16倍或者8倍对总线上的数据一个一个地进行采集,根据最后采集到的情况来判断信号的状态。



举个例子,当我们采集START信号的时候,实际上它要求采集到1110 x0x0x0 000这样固定的序列的时候才认为是一个起始信号。START信号在串口里是一个bit的低电平信号,我们用16倍的速率进行采样,首先它在前面会做一个下降沿检测,这个检测是要在前面的4个bit能检测到1110,硬件会对总线上的数据根据采样点一直进行检测,这里的采样点就是APB的时钟,串口挂在不同的APB上用的时钟不一样。采样的时候采集到1110就知道是一个下降沿,后面的x意思是任意的,后面的几个位中至少需要检测到三个0,而最后边的三个位需要是连续的三个0,这样才能被判定是一个起始位。其实只是判断了3、5、7、8、9、10这六个点,只要是0,就可以确认了。这里我们是以START信号为例,其他信号也是这样的。


可能有人会有疑问,x是任意的,不去检测,如果0不满足要求应该怎么办呢?


如果3、5、7、8、9、10这六个点都是0,那就可以认为这是一个起始信号;如果在3、5、7和8、9、10这两个阶段都满足至少有两个bit是0的话,那就可以确认它是起始信号,确认的意思是说它里面的接收缓冲区非空,标志位就已经置上了,承认这个信号,但是还要给一个NE的标志位,因为虽然承认了这个信号,但里面是存在噪声的。我们看串口的中断标志位的时候就可以看到,在它的错误事件里就有一个NOISE FLAG,这个位就表示当串口在接收的时候,在总线上检测到的电平并不是一个标准的、完整的高电平或者低电平,会有错误但不影响整个数据的接收,如果在接收的时候开启了EIE位,错误可以产生一个中断,让MCU对总线上的情况有一个了解。
 


如果前三个bit满足条件,而后三个bit没有满足的话,那就说明这个数据是错误的,就不会置标志位了,只要在3、5、7和8、9、10这两个阶段中有一个阶段不满足条件,就不会置位,并且还会有噪声的说明。


当然了,这些都是在检测下降沿没有问题的情况下来说的,如果说在检测下降沿1110都不完整或者是错误的,直接就会回到ideal状态,重新等待下一个数据发送过来。


3.SPI的速度为什么这么快?

我们可以看一下SPI的时序图,图中上面两根线是CLOCK线,它根据配置的不同而不同,在CPHA=0时,即在第一个时钟沿进行采样,CPOL表示的是时钟的默认电平是高电平(CPOL=1)还是低电平(CPOL=0),这里看到的每个时钟都可以传输一个bit。



4.SPI速率是不是应该和系统时钟一样?

其实不是,因为系统需要时间去获取采集到的数据,所以SPI的时钟分频系数最小是二分之一的分频,那么就是说SPI的速度是系统时钟的一半了。


有人觉得同步传输明显优于异步传输,因为有时钟线,传输速率会更高。


但其实这种说法并不是完全正确的,因为每一种传输方式都有自己的优势。比如串口有自动波特率的功能,就是说在接收的时候并不知道主机是按照什么样的波特率进行传输的,那就只能等主机发一个特定字节的数据过来并且检测数据的状态,然后自己硬件去设置波特率的寄存器,这样就可以在下一次传输的时候和主机使用相同的波特率。其次,在不同的温度范围内,内部的RC振荡器是有温漂的并且很大,最标准的校准方法是给它一个时钟沿,但是很多时候并没有这个时钟沿,那我们就可以用自动波特率。每次通讯的时候都采用自动波特率,就是每次都先接收,接收之后BRR寄存器里面的值就会随着温度的变化发生改变,MCU就可以根据BRR的值来调节HSITRIM这个方法的好处是不需要提供一个非常标准的时钟,通过串口通讯这种异步的方式就可以把时钟信息传给单片机内部。

  END  

推荐阅读:

精选汇总 | 目录 | 搜索
是什么让我坚持了每天更新文章?
Socket通信正确流程是怎样的?

关注公众号『strongerHuang』,后台回复“微信”,可添加我个人微信。


长按识别图中二维码关注

strongerHuang 作者黄工,高级嵌入式软件工程师,分享嵌入式软硬件、物联网、单片机、开发工具、电子等内容。
评论 (0)
  • 多极电磁铁的核心应用领域一、工业制造领域1.‌磁性材料处理‌:用于多极磁环充磁,通过四极、六极或八极磁场设计,使磁环获得均匀或梯度分布的磁性能,提升电机、传感器等设备的效率‌。在电子束焊接中控制电子束的聚焦和偏转,增强焊接精度(如精密电子元件加工)‌。2.‌机械控制与自动化‌应用于旋转磁场导向系统,优化工业机器人、自动化产线中磁性物料的传输路径。配合电磁吸盘用于起重设备,实现对金属部件的快速吸附与释放,提高搬运效率。二、科研实验领域1.‌物理与材料研究‌在实验室中生成径向梯度磁场或均匀磁场,用于
    锦正茂科技 2025-04-16 09:39 100浏览
  •   水下装备体系论证系统软件全面解析   一、系统概述   水下装备体系论证系统软件是针对水下作战、资源勘探、海洋工程等需求,专门设计的信息化论证工具。该系统通过集成建模、仿真、优化等技术,对水下装备体系的使命任务、环境适应性、技术参数、作战效能等进行全流程分析,为装备体系设计、方案权衡和决策提供科学依据。   应用案例   目前,已有多个水下装备体系论证系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润水下装备体系论证系统。这些成功案例为水下装备体系论证系统的推广和应用提
    华盛恒辉l58ll334744 2025-04-16 17:03 179浏览
  • 一、芯片的发展历程总结:1、晶体管的诞生(1)电子管时代 20世纪40年代,电子管体积庞大、功耗高、可靠性差,无法满足计算机小型化需求。(2)晶体管时代 1947年,贝尔实验室的肖克利、巴丁和布拉顿发明点接触晶体管,实现电子信号放大与开关功能,标志着固态电子时代的开端。 1956年,肖克利发明晶体管。(3)硅基晶体管时代 早期晶体管采用锗材料,但硅更耐高温、成本低,成为主流材料。2、集成电路的诞生与发展 1958年,德州仪器工程师基尔比用锗材料制成世界上第一块含多个晶体管的集成电路,同年仙童半导
    碧海长空 2025-04-15 09:30 224浏览
  • 2025年4月13日(中国武汉)——在全球经济分化与地缘政治不确定性加剧的背景下,科技与金融的深度融合已成为推动创新与繁荣的关键动力。为实现科技创新、产业进步和金融发展有机结合,发挥金融对科技创新和产业进步的支持作用,国际金融论坛(IFF)科技金融委员会启动大会暨首届科技金融圆桌会议于4月13日在湖北省武汉市武汉产业创新发展研究院成功举行。同时,IFF科技金融委员会由国际金融论坛IFF与武创院联合成立。本次大会汇聚了来自政府、产业与学术研究机构及金融等多领域的精英,共同探讨科技金融如何更好地服务
    华尔街科技眼 2025-04-15 20:53 110浏览
  • 4月15日,京东全球购迎来十周年生日。为了回馈广大用户十年来的支持与信赖,早在4月初,京东全球购就已率先开启十周年庆典活动,为消费者带来了一场消费盛宴。来自全球各地的进口好物,以全场进口大牌1元抢、爆品低至5折、跨店每满200减30的优惠价格被呈现在消费者面前。同时,在迎来十周年庆典之际,京东全球购还宣布,未来一年,将投入亿级资源,升级四大商家扶持举措,包括提供仓配和流量等多项补贴,推出扶持新品、新商家等举措,助力更多进口商家降本提效,在京东获得可持续、高质量成长。十年如一日 打造跨境购物首选平
    华尔街科技眼 2025-04-16 16:18 139浏览
  •   网络链路攻防战术对抗仿真系统软件深度剖析   一、系统概览   北京华盛恒辉网络链路攻防战术对抗仿真系统软件,是专为网络安全领域攻防对抗需求打造的高仿真平台。它模拟真实网络环境中的攻、防行为,为安全研究人员以及红队、蓝队提供实战训练和策略验证工具。该系统以动态仿真技术为核心,融合人工智能与大数据分析,实现攻防战术的自动推演与可视化展示 。   应用案例   目前,已有多个网络链路攻防战术对抗仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润网络链路攻防战术对抗仿
    华盛恒辉l58ll334744 2025-04-16 14:42 105浏览
  • 近日,全球6G技术与产业生态大会(简称“全球6G技术大会”)在南京召开。紫光展锐应邀出席“空天地一体化与数字低空”平行论坛,并从6G通信、感知、定位等多方面分享了紫光展锐在6G前沿科技领域的创新理念及在空天地一体化技术方面的研发探索情况。全球6G技术大会是6G领域覆盖广泛、内容全面的国际会议。今年大会以“共筑创新 同享未来”为主题,聚焦6G愿景与关键技术、安全可信、绿色可持续发展等前沿主题,汇聚国内外24家企业、百余名国际知名高校与科研代表共同商讨如何推动全行业6G标准共识形成。6G迈入关键期,
    紫光展锐 2025-04-17 18:55 68浏览
  • 一、智能门锁市场痛点与技术革新随着智能家居的快速发展,电子门锁正从“密码解锁”向“无感交互”进化。然而,传统人体感应技术普遍面临三大挑战:功耗高导致续航短、静态人体检测能力弱、环境适应性差。WTL580微波雷达解决方案,以5.8GHz高精度雷达感知技术为核心,突破行业瓶颈,为智能门锁带来“精准感知-高效触发-超低功耗”的全新交互范式。二、WTL580方案核心技术优势1. 5.8GHz毫米波雷达:精准感知的革命全状态人体检测:支持运动、微动(如呼吸)、静态(坐卧)多模态感知,检测灵敏度达0.1m/
    广州唯创电子 2025-04-15 09:20 148浏览
  • 一、引言:健康管理数字化浪潮下的血压监测转型在慢性病高发与老龄化加剧的双重压力下,家庭健康监测设备正从“被动测量工具”向“主动健康管家”演进。传统血压计虽能提供基础数值,却无法解决用户的核心痛点:数据如何解读?异常如何干预?风险如何预防?WT2605C芯片方案的诞生,通过“AI对话+云端互联+个性化服务”三重技术突破,重新定义了血压计的价值边界——它不仅是一台测量仪器,更是一个全天候在线的健康管理生态系统。二、传统血压计的局限与用户需求升级1. 功能单一性困境数据孤岛:仅显示收缩压/舒张压数值,
    广州唯创电子 2025-04-16 08:55 188浏览
  • 二、芯片的设计1、芯片设计的基本流程 (1)需求定义: 明确芯片功能(如处理器、存储、通信)、性能指标(速度、功耗、面积)及目标应用场景(消费电子、汽车、工业)。 (2)架构设计: 确定芯片整体框架,包括核心模块(如CPU、GPU、存储单元)的协同方式和数据流路径。 (3)逻辑设计: 通过硬件描述语言(如Verilog、VHDL)将架构转化为电路逻辑,生成RTL(寄存器传输级)代码。 (4)物理设计: 将逻辑代码映射到物理布局,涉及布局布线、时序优化、功耗分析等,需借助EDA工具(如Ca
    碧海长空 2025-04-15 11:30 266浏览
  • 在这个AI技术日新月异的时代,人工智能(AI)已经逐渐渗透到我们生活的方方面面,从工作到学习,从娱乐到医疗,AI都在以其独特的方式改变着我们的世界。作为一名计算机专业的大学老师,我近期有幸阅读了《AI帮你赢:人人都能用的AI方法论》一书,深感这本书不仅为专业人士提供了宝贵的AI使用技巧,更为广大学生打开了一扇通往AI世界的大门。 《AI帮你赢》一书于2024年12月正式出版,也是紧跟时代发展的一本书,最新的日期。这本书以通俗易懂的语言,系统地阐述了人工智能的核心理念、应用场景及实践方法
    curton 2025-04-16 21:47 134浏览
  • 一、引言:智能化趋势下的学爬玩具开发挑战随着早教理念的普及,学爬玩具作为婴幼儿早期运动能力开发的重要工具,市场需求持续增长。然而,传统学爬玩具开发面临多重挑战:需集成红外遥控、语音交互、电机控制等多模块,开发周期长、硬件成本高;复杂的红外编解码与语音功能实现依赖工程师深度参与,技术门槛陡增。如何以更低成本、更快速度打造差异化产品,成为行业亟待解决的痛点。二、传统开发模式痛点分析硬件冗余红外接收模块、语音芯片、主控MCU分立设计,导致PCB面积增加,BOM成本攀升。开发周期长需工程师独立完成红外协
    广州唯创电子 2025-04-16 08:40 163浏览
  • 三、芯片的制造1、制造核心流程 (1)晶圆制备:以高纯度硅为基底,通过拉晶、切片、抛光制成晶圆。 (2)光刻:光刻、离子注入、薄膜沉积、化学机械抛光。 (3)刻蚀与沉积:使用干法刻蚀(等离子体)精准切割图形,避免侧壁损伤。 (4)掺杂:注入离子形成PN结特性,实现晶体管开关功能。2、材料与工艺创新 (1)新材料应用: 高迁移率材料(FinFET中的应变硅、GaN在射频芯片中的应用); 新型封装技术(3D IC、TSV硅通孔)提升集成度。 (2)工艺创新: 制程从7nm到3nm,设计架构由F
    碧海长空 2025-04-15 11:33 312浏览
  • 瑞芯微电子(Rockchip)是国内领先的AIoT SoC设计制造企业,专注于智能应用处理器及周边配套芯片的研发。飞凌嵌入式作为瑞芯微的战略合作伙伴,已基于瑞芯微RK3399、RK3568、RK3588、RK3576、RK3562和RK3506系列处理器推出了多款嵌入式主控产品,包括核心板、开发板和工控机,这些产品已成功帮助数千家企业客户完成了项目的快速开发和落地。本文将系统地梳理飞凌嵌入式RK平台主控产品在开发过程中常用的命令,助力更多开发者快速掌握RK系列芯片的开发方法。01、查看CPU温度
    飞凌嵌入式 2025-04-16 15:50 188浏览
  • 四、芯片封测技术及应用场景1、封装技术的发展历程 (1)DIP封装:早期分立元件封装,体积大、引脚少; (2)QFP封装:引脚密度提升,适用于早期集成电路。 (3)BGA封装:高密度互连,散热与信号传输优化; (4)3D封装:通过TSV(硅通孔)实现垂直堆叠,提升集成度(如HBM内存堆叠); (5)Chiplet封装:异质集成,将不同工艺节点的模块组合(如AMD的Zen3+架构)。 (6)SiP封装:集成多种功能芯片(如iPhone的A系列SoC整合CPU、GPU、射频模块)。2、芯片测试 (1
    碧海长空 2025-04-15 11:45 356浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦