AI技术专题之六:STM32计算机视觉包FP-AI-VISION1简介

STM32单片机 2021-11-22 10:00

☝ 点击上方蓝字关注我们

‍‍‍‍‍‍‍‍

作为世界上领先的半导体公司之一,意法半导体一直积极参与快速发展的嵌入式人工智能技术研发。为了让经济实用型低功耗微控制器加速应用机器学习和深度神经网络,意法半导体开发了一款全面的Edge AI系统,支持嵌入式开发人员利用众多STM32微控制器产品上的AI,轻松添加新特性和强大的解决方案。


如图1所示,意法半导体AI解决方案涵盖了整个STM32产品组合,借助预训练神经网络,嵌入式开发人员可以在任何基于Cortex M4、M33和M7的STM32上进行移植、优化和验证。STM32Cube.AI是STM32CubeMX的AI扩展包,让客户能够更高效地开发自己的AI产品。


您可以在STM32应用中运用深度学习的强大功能来增强信号处理性能和提高生产率。

图1运行机器学习和深度学习算法的STM32产品组合



本文概述了计算机视觉开发框架FP-AI-VISION1,附有在STM32H7上运行的视觉应用代码示例。

从FP-AI-VISION1代码示例起步,可以轻松实现运行在边缘的不同计算机视觉用例,比如:

  • 生产线上的目标分类,根据目标类型调整皮带的速度

  • 检测产品的典型缺陷

  • 将不同类型的螺栓、意式面食、乐高零件进行分类,并归类到不同的容器中

  • 将设备或机器人操作的材料分类,并相应地调整其行为

  • 将食品分类,以便于烹饪/烧烤/酿造、或重新订购货架上的新产品



FP-AI-VISION1
概述


FP-AI-VISION1是一种STM32Cube功能包(FP),含有基于卷积神经网络(CNN)的计算机视觉应用实例。它由STM32Cube.AI生成的软件组件组成,与专门用于基于人工智能的计算机视觉应用的应用软件组件相辅相成。功能包中提供的应用程序示例如下:
  • 食品识别:识别18种常见食物

  • 人员在场检测:确定是否有人出现在图像中

  • 人数统计:基于目标检测模型统计场景中的人数。

主要特性


FP-AI-VISION1运行在与STM32F4DIS-CAM相机子模块或B-CAMS-OMV相机模块套装相连的STM32H747I-DISCO板件上。它包括完整的应用固件,用于摄像头捕捉、帧图像预处理、推理执行以及后处理。它还提供浮点和8位量化C模型的集成示例,并支持数据存储器位置的几种配置,以满足应用需求。

该FP最重要的主要优点之一是提供示例,描述如何有效地将不同类型的数据置于片上和外部存储器中。如此一来,用户便能轻松理解哪种内存分配最适合需求,并有助于创建运行在STM32系列产品(特别是STM32H747-disco板)上的自定义神经网络模型。

图2 用于评估FP-AI-VISION1示例的设备


FP-AI-VISION1包括三个基于CNN的图像分类应用示例:
  • 一个在彩色(RGB 24位)帧图像上运行的食品识别应用

  • 一个在彩色(RGB 24位)帧图像上运行的人员存在检测应用

  • 一个在灰度(8位)帧图像上运行的人员存在检测应用

在本文中,我们重点介绍两个示例:食品识别人员存在检测

首先,让我们看看食品识别应用

食品识别CNN是MobileNet模型的衍生模型。MobileNet是一种适用于移动和嵌入式视觉应用的高效模型架构。该模型架构由Google®提出。

MobileNet模型架构包括两个简单的全局超参数,可以有效地在延迟和精度之间进行权衡。原则上,这些超参数允许模型构建者根据问题的约束条件确定大小适当的应用模型。该FP中使用的食品识别模型基于STM32H747目标约束条件调整这些超参数,实现精度、计算资源和内存占用之间的最优权衡。

图3 食品识别模型的执行流程


图3为食品识别模型的执行流程。它在STM32H747上运行,大约需要150ms完成推理。

接下来,让我们看看人员在场检测应用

FP-AI-VISION1提供了两个人员存在检测示例应用:
  • 一个示例应用基于低复杂度的CNN模型(所谓的Google_Model),作用于分辨率为96 × 96像素的灰度图像(8位/像素)。该模型可以从storage.googleapis.com下载。

  • 另一个示例应用基于复杂度较高的CNN模型(所谓的MobileNetv2模型),作用于分辨率为128 × 128像素的彩色图像(24位/像素)。


这里看到的是前一个模型。人员在场检测应用确定一个人是否出现在图像中。当我们在与STM32F4DIS-CAM连接的STM32L4R上运行此应用时,需要大约270 ms进行推理。flash存储器和RAM虽然小,但是仍然可以在微控制器上运行神经网络(NN),如图4所示。

图4 人员存在检测概述


人员在场检测可用于从低功耗模式中唤醒。可能的用例是打开灯光、打开门,或任何其他自定义方法。典型实现通常基于被动式红外传感器,在检测到运动时触发事件。但这种PIR系统存在的问题是,可能会发生虚假检测,一只猫经过或树叶在风中飘过都可能触发该系统。人员在场检测应用将只检测人类,这样有助于轻松开发更智能的检测系统。
系统架构


FP-AI-VISION1的顶层架构如图5所示。

图5 FP-AI-VISION1架构

应用构建流程


从浮点CNN模型(使用Keras等框架设计和训练)起步,用户生成优化的C代码(使用STM32Cube.AI工具),并将其集成到计算机视觉框架(作为FP-AI-VISION1的一部分)中,以便在STM32H7上构建计算机视觉应用。
在生成C代码时,用户可以选择以下两种选项之一:
  • 直接从浮点CNN模型生成浮点C代码

  • 或者对浮点CNN模型进行量化以得到8位模型,然后生成相应的量化C代码


对于大多数CNN模型,第二种选择可以减少资源占用(Flash和RAM)以及推理时间。对最终输出精度的影响取决于CNN模型和量化过程(主要是测试数据集和量化算法)。

图6 FP-AI-VISION1运行架构


应用执行流程


图7 执行流程中的数据缓冲区


在计算机视觉应用情景中,集成需要几个数据缓冲区,如图7所示。

应用依次执行以下操作:
  1. 在camera_capture缓冲区中获取相机帧(通过DMA引擎从DCMI数据寄存器获取)。

  2. 此时,根据所选的内存分配配置,将camera_capture缓冲区内容复制到camera_frame缓冲区,并启动对后续帧的捕获。

  3. 将camera_frame缓冲区中包含的图像重新缩放到Resize_Dst_Img缓冲区,以匹配预期的CNN输入张量维度。例如,食品识别NN模型需要像‘高度 × 宽度 = 224 × 224像素’这样的输入张量。

  4. 执行从Resize_Dst_Img缓冲区到Pfc_Dst_Img缓冲区的像素颜色格式转换。

  5. 将Pfc_Dst_Img缓冲区内容中包含的每个像素的格式调整到nn_input缓冲区中。

  6. 运行NN模型的推理:nn_input缓冲区以及激活缓冲区作为NN的输入。分类结果存储在nn_output缓冲区中。

  7. 对nn_output缓冲区内容进行后处理,并在LCD显示器上显示结果。


表1详细说明了食品识别应用在集成量化C模型或浮动C模型时所需的数据RAM大小。

表1食品识别应用的SRAM内存缓冲区

                                


想了解更多详情?
扫描二维码下载免费资料~


FP-AI-VISION1


UM2611:FP-AI-VISION1手册




UM2526:STM32Cube.AI手册





 我们将策划一系列AI主题文章,详细介绍意法半导体在Deep Edge AI领域的努力成果。
  欢迎您在文后积极留言,告诉我们想了解意法半导体AI的哪些方面,我们将为您呈现更多精彩内容。


相关阅读




▷ 学知识赢好礼!AI技术专题之一:意法半导体人工智能解决方案概述

▷ AI技术专题之二:机器学习模型设计过程和MEMS MLC【文末留言好礼】

▷ AI技术专题之三:嵌入式机器学习核心运行决策树分类器【文末留言好礼】

▷ AI技术专题之四:AI在Deep Edge领域中的应用

▷ AI技术专题之五:专为STM32 MCU优化的STM32Cube.AI库


END



长按二维码关注,了解更多信息
 长按关注STM32



点击“阅读原文”查看更多STM32 AI相关资讯

STM32单片机 ST MCU (产品+工具+资料+技术+市场+活动)x 您的关注x您的支持 = STM32 单片机蝴蝶乐园
评论
  • 铁氧体芯片是一种基于铁氧体磁性材料制成的芯片,在通信、传感器、储能等领域有着广泛的应用。铁氧体磁性材料能够通过外加磁场调控其导电性质和反射性质,因此在信号处理和传感器技术方面有着独特的优势。以下是对半导体划片机在铁氧体划切领域应用的详细阐述: 一、半导体划片机的工作原理与特点半导体划片机是一种使用刀片或通过激光等方式高精度切割被加工物的装置,是半导体后道封测中晶圆切割和WLP切割环节的关键设备。它结合了水气电、空气静压高速主轴、精密机械传动、传感器及自动化控制等先进技术,具有高精度、高
    博捷芯划片机 2024-12-12 09:16 323浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 186浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-12 10:13 132浏览
  • 全球智能电视时代来临这年头若是消费者想随意地从各个通路中选购电视时,不难发现目前市场上的产品都已是具有智能联网功能的智能电视了,可以宣告智能电视的普及时代已到临!Google从2021年开始大力推广Google TV(即原Android TV的升级版),其他各大品牌商也都跟进推出搭载Google TV操作系统的机种,除了Google TV外,LG、Samsung、Panasonic等大厂牌也开发出自家的智能电视平台,可以看出各家业者都一致地看好这块大饼。智能电视的Wi-Fi连线怎么消失了?智能电
    百佳泰测试实验室 2024-12-12 17:33 282浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 120浏览
  • 首先在gitee上打个广告:ad5d2f3b647444a88b6f7f9555fd681f.mp4 · 丙丁先生/香河英茂工作室中国 - Gitee.com丙丁先生 (mr-bingding) - Gitee.com2024年对我来说是充满挑战和机遇的一年。在这一年里,我不仅进行了多个开发板的测评,还尝试了多种不同的项目和技术。今天,我想分享一下这一年的故事,希望能给大家带来一些启发和乐趣。 年初的时候,我开始对各种开发板进行测评。从STM32WBA55CG到瑞萨、平头哥和平海的开发板,我都
    丙丁先生 2024-12-11 20:14 154浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 171浏览
  • 本文介绍瑞芯微RK3588主板/开发板Android12系统下,APK签名文件生成方法。触觉智能EVB3588开发板演示,搭载了瑞芯微RK3588芯片,该开发板是核心板加底板设计,音视频接口、通信接口等各类接口一应俱全,可帮助企业提高产品开发效率,缩短上市时间,降低成本和设计风险。工具准备下载Keytool-ImportKeyPair工具在源码:build/target/product/security/系统初始签名文件目录中,将以下三个文件拷贝出来:platform.pem;platform.
    Industio_触觉智能 2024-12-12 10:27 203浏览
  • 应用环境与极具挑战性的测试需求在服务器制造领域里,系统整合测试(System Integration Test;SIT)是确保产品质量和性能的关键步骤。随着服务器系统的复杂性不断提升,包括:多种硬件组件、操作系统、虚拟化平台以及各种应用程序和服务的整合,服务器制造商面临着更有挑战性的测试需求。这些挑战主要体现在以下五个方面:1. 硬件和软件的高度整合:现代服务器通常包括多个处理器、内存模块、储存设备和网络接口。这些硬件组件必须与操作系统及应用软件无缝整合。SIT测试可以帮助制造商确保这些不同组件
    百佳泰测试实验室 2024-12-12 17:45 276浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-11 17:58 161浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 125浏览
  • 在智能化技术快速发展当下,图像数据的采集与处理逐渐成为自动驾驶、工业等领域的一项关键技术。高质量的图像数据采集与算法集成测试都是确保系统性能和可靠性的关键。随着技术的不断进步,对于图像数据的采集、处理和分析的需求日益增长,这不仅要求我们拥有高性能的相机硬件,还要求我们能够高效地集成和测试各种算法。我们探索了一种多源相机数据采集与算法集成测试方案,能够满足不同应用场景下对图像采集和算法测试的多样化需求,确保数据的准确性和算法的有效性。一、相机组成相机一般由镜头(Lens),图像传感器(Image
    康谋 2024-12-12 09:45 173浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 103浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 149浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦