氮化镓FET相比MOSFET有什么优势?


欢迎加入技术交流QQ群(2000人):电力电子技术与新能源 785975151


高可靠新能源行业顶尖自媒体


在这里有电力电子、新能源干货、行业发展趋势分析、最新产品介绍、众多技术达人与您分享经验,欢迎关注微信公众号:电力电子技术与新能源(Micro_Grid),论坛:www.21micro-grid.com,建立的初衷就是为了技术交流,作为一个与产品打交道的技术人员,市场产品信息和行业技术动态也是必不可少的,希望大家不忘初心,怀有一颗敬畏之心,做出更好的产品!

电力电子技术与新能源论坛

www.21micro-grid.com


小编推荐值得一看的书单电力电子技术与新能源推荐书单


  • The Power MOSFET 应用手册

  • [视频]反激电路Flyback

  • 车用永磁同步电机控制及弱磁方法

  • [视频]IGBT模块技术参数详解

  • [视频]英飞凌双脉冲实验教具使用说明

  • 碳化硅在光伏逆变器中的应用-阳光电源

  • 华为精华资料—终端互连PCB设计规范分享

  • 复旦电赛培训_辅助电源_刘祖望_电力电子技术与新能源

  • 环路指导书LOOP Training

  • [视频]浙大碳化硅技术发展与应用介绍

电源的发展必然需要小体积高效率产品,提高工作频率是必然趋势功率密度上看GaN, SiC占优势。传统硅材料在电源转换上应用发展几十年了,现已到达它的物理极限,发展空间有限。氮化镓材料最早是从LED及RF方面进入人们的视线,现在发展进入功率器件应用领域。适合高频高压。氮化镓GaN将提供高性能,低成本的方案。因氮化镓基于硅衬底,将来8,12英寸的晶元将大大降低使用成本。


常见功率器件:

常见功率器件的功率范围:

MOSFET内部结构

硅材料的垂直结构使得P/N结存在,即必然有慢速的寄生二极管。

MOSFET主要参数表:

为什么需要GaN

•在相同的测试电路中,与硅器件相比,反向恢复损耗低。

•低导通阻抗

•更快速

•低分布电容

•小体积

•低成本


 用GaN材料制成的功率器件GaN FET具有低的击穿电压、低的阈值电压、低的栅极电荷Qg,其开关频率高,导通电阻小。GaN FET优越的特性与其器件结构有极大的关系。但是它的缺点也不可忽视,在高频应用场合表现极为明显,比如其对寄生参数极其敏感,高频使用时极易使栅极电压产生振荡,引起栅极过电压,导致器件工作不稳定,甚至不安全。因此相较于传统的Si基半导体器件的驱动电路,GaN FET的驱动要求更为严苛。GaN FET的进步、应用的发展与其器件结构和驱动电路有密不可分的联系,因此,其器件结构和驱动电路的研究很有意义。


功率氮化镓场效应晶体管具备极低的Qrr和非常快速的开关转换,可减少开关损耗,实现最 高效率。包含半桥电路的方案,无论是AC/DC、DC/DC还是多相DC/AC逆变器,都能受益于 氮化镓场效应晶体管的应用。

如下图,GaN FET实现电源电路,效率更高,损耗更低。


氮化镓场效应晶体管图腾柱无桥PFC 

在硬开关应用中,功率氮化镓场效应晶体管明显优于所有其他功率器件,当使用图腾柱 拓扑时,不但提高了性能,而且减少了50%器件数量。较少的器件数量可以降低系统成本, 提高功率密度,同时提升整个系统的可靠性。提高了整个系统的效率,也有助于减少昂贵 的散热冷却系统和在密闭环境中的相关操作成本。



导通阻抗和击穿电压的极限


氮化镓FET内部结构


GaN FET的器件结构及工作原理

 GaN FET器件的结构目前主要有耗尽型(Depletion mode,D-mode)和增强型(Enhancement mode,E-mode)。增强型GaN FET又分单体GaN和Cascade GaN(共栅共源)。

1、耗尽型GaN FET

耗尽型GaN FET的器件结构如图所示。

耗尽型GaN FET采用Si材料作为GaN FET的基片,在Si基片基础上生长出高阻性的GaN晶体层,即氮化镓通道层(GaN channel)。一般在GaN层和Si衬底层之间添加氮化铝(AIN)绝缘层作为氮化镓缓冲层(GaN buffer),将器件和衬底隔离开来。AlGaN层存在GaN层和栅极(G)、源极(S)和漏极(D)之间;AlGaN层和GaN层之间可以产生具有高电子迁移率、低电阻特性的二维电子气(Two-Dimensional Electron Gas,2DEG),且它的浓度随AlGaN厚度先线性增加,然后达到饱和。

与Si传统器件不同,耗尽型GaN FET由于氮化物极强的极化效应,AlGaN/GaN异质结可以通过自发极化和压电极化效应在其界面形成很高浓度2DEG导电沟道,在零栅压下,器件处于导通状态。因此往往需要负压关断。耗尽型GaN FET不同于Si MOSFET的是,由于其栅极下方不存在与S极连接的P型寄生双极性区,因此没有寄生体二极管,故而器件开关损耗小、具有对称的传导特性。因此GaN FET可由正栅源电压VGS或正栅漏电压VGD驱动。

2、增强型GaN FET

    对于耗尽型GaN FET,要关断器件,必须加负栅压。这意味着电路中一旦有耗尽型GaN FET,就会增加栅极驱动设计的复杂性,而且易发生误导通,有直通的潜在威胁,使电路稳定性和安全性降低。增强型GaN FET则相反,只有加正偏压才会导通,减小了电路复杂性,稳定性和安全性也较好。目前,增强型GaN FET主要是在耗尽型高电子迁移率晶体管(Gallium Nitride High Electron Mobility Transistor,GaN HEMT)结构的基础上改进而成。目前主要的增强型GaN FET结构方案包括:P型栅、凹槽栅、Cascode结构等。


3、 P型栅结构

    有很多学者研究P型栅结构的GaN FET,如图所示。与耗尽型不同的是,P型栅结构是在AlGaN势垒层上生长了一个带正电的P型GaN栅极,如图中的P-GaN层。P型GaN层可以拉升AlGaN势垒层的能带,起到耗尽2DEG的作用,以实现常断特性。当施加足够的正VGS时,使栅源电压大于阈值电压,P-GaN层的内电场被削弱,2DEG浓度上升,形成导通沟道,GaN FET器件导通。随着VGS的降低且小于阈值电压,沟道又逐渐关闭,GaNFET器件关断。因此,这种结构主要是通过控制P型栅极势垒的电位,升降AlGaN势垒层的能带,使2DEG的浓度改变来实现对GaNFET器件的通断控制。

在P型栅结构的基础上,采用在P-GaN层上沉积TiN金属,形成三层掩膜的栅极结构,从而实现肖特基接触,如图所示。这种结构存在栅极场板,可增加高压应用场板设计的灵活性。实验证明,这种结构具有低栅极电阻、降低高漏源电压VDS时的导通电阻RDS-ON等优势,且相比采用欧姆接触的P-GaN结构,此结构降低了栅极漏电流。

 凹槽栅结构

    凹槽栅结构如图所示,此结构通过电感耦合等离子体(Inductively Couple Plasma,ICP)干法刻蚀技术刻蚀掉栅极下方区域一定厚度的AlGaN势垒层,当AlGaN势垒层厚度减薄到一定程度时,沟道内的2DEG浓度会足够低。凹型栅极下方的整个AlGaN势垒层被去除,栅极下的2DEG消失,栅极金属下沉积了Al2O3膜作为栅极电介质,可防止由于器件尺寸越来越小而引发严重栅极漏电流、击穿电压过低等问题。在零栅压下,2DEG浓度小到可以忽略,器件处于关断状态。只有施加正栅压后,导电通道才会恢复,实现器件导通,即实现增强型特性。但除去栅极下方的势垒层,AlGaN势垒层其他区域的未被减薄,2DEG浓度保持原有水平。因此,凹槽栅技术制成的GaN FET在饱和电流和跨导方面较有优势。

 Cascode结构

    Cascode结构是由高压耗尽型GaN HEMT和低压增强型Si MOSFET(金属氧化物半导体场效应晶体管)级联构成的,如图5所示。


    从结构可知,当器件不加栅压且漏源电压大于零时,工作在正向阻断模态;当栅压大于Si MOSFET的阈值电压时,器件正向导通;一旦Si MOSFET反向导通,器件将工作在反向导通模态。又因为Si MOSFET的漏源电压Vds_Si给GaN HEMT的栅源电压Vgs_GaN提供负偏置电压,因此控制Si MOSFET的通断即可控制GaN HEMT的通断。当然,这种结构由于引入了硅基器件,因此对封装的要求较高,体积也较大。

    与其他结构GaNFET相比,Cascode GaNFET的结构,电压等级较高、驱动电压范围较宽,但对dv/dt和di/dt敏感,特别是在高频时,共源电感过大可能会使器件损坏。Andrew等人通过将智能栅极驱动与Si MOSFET集成,驱动耗尽型GaN HEMT,形成智能Cascade GaNFET。该智能Cascade GaNFET内置电流检测、可调输出电阻、可调电流检测率和智能数字控制。实验表明,此改进的Cascode结构通过利用动态开关技术,可以减少栅极振荡、降低高电压和电流转换速率、解决dv/dt和di/dt问题,优化EMI。

GaN FET参数

GaN FET外形


MOSFET VS  GaNFET对比




参考文档:

《 氮化镓FET(HEMT)》——Transphrom 

《氮化镓功率器件基础培训》北高智 工业电子事业部  邱勉为

《GaN FET的结构、驱动及应用综述》2020年电子技术应用第1期 伍文俊,兰雪梅


限于篇幅,已做删减,另文章首尾冠名广告正式招商,功率器件,SiC,GaN,数字电源,新能源厂家都可合作,有意者加微信号1768359031详谈。

说明:本文来源网络;文中观点仅供分享交流,不代表本公众号立场,转载请注明出处,如涉及版权等问题,请您告知,我们将及时处理。

Please clik the advertisement and exit

重点

如何下载《新能源汽车电子技术板块内高清PDF电子书


点击文章底部阅读原文,访问电力电子技术与新能源论坛(www.21micro-grid.com)下载!


或者转发所要文章到朋友圈不分组不屏蔽,然后截图发给小编(微信1413043922),小编审核后将文章发你!



推荐阅读:点击标题阅读

LLC_Calculator__Vector_Method_as_an_Application_of_the_Design

自己总结的电源板Layout的一些注意点

High_Frequency_Transformers_for_HighPower_Converters_Materials

华为电磁兼容性结构设计规范V2.0

Communication-less Coordinative Control of Paralleled Inverters

Soft Switching for SiC MOSFET Three-phase Power Conversion

Designing Compensators for Control of Switching Power Supplies

100KHZ 10KW Interleaved Boost Converter with full SiC MOSFET

华为-单板热设计培训教材


看完有收获?请分享给更多人


公告:

本公众号也有微信群,如有需要,备注加群,谢谢!加小编微信号(QQ号)1413043922,请注明研究方向或从事行业(比如光伏逆变器硬件)小编对电力电子技术与新能源及微电网的市场发展很看好,对其关键技术很感兴趣,如有技术问题,欢迎加小编微信,共同讨论。

更多精彩点下方“阅读原文”

      点亮“在看,小编工资涨1毛!

电力电子技术与新能源 电力电子技术,交直流微电网,光伏并网逆变器,储能逆变器,风电变流器(双馈,直驱),双向变流器PCS,新能源汽车,充电桩,车载电源,数字电源,双向DCDC,锂电池,超级电容,燃料电池,能量管理系统以及APF,SVG ,UPQC等
评论
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 207浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 173浏览
  • 飞凌嵌入式基于瑞芯微RK3562系列处理器打造的FET3562J-C全国产核心板,是一款专为工业自动化及消费类电子设备设计的产品,凭借其强大的功能和灵活性,自上市以来得到了各行业客户的广泛关注。本文将详细介绍如何启动并测试RK3562J处理器的MCU,通过实际操作步骤,帮助各位工程师朋友更好地了解这款芯片。1、RK3562J处理器概述RK3562J处理器采用了4*Cortex-A53@1.8GHz+Cortex-M0@200MHz架构。其中,4个Cortex-A53核心作为主要核心,负责处理复杂
    飞凌嵌入式 2025-01-24 11:21 103浏览
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 100浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 161浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 220浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 139浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 167浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 218浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 755浏览
  • 书接上回:【2022年终总结】阳光总在风雨后,启航2023-面包板社区  https://mbb.eet-china.com/blog/468701-438244.html 总结2019,松山湖有个欧洲小镇-面包板社区  https://mbb.eet-china.com/blog/468701-413397.html        2025年该是总结下2024年的喜怒哀乐,有个好的开始,才能更好的面对2025年即将
    liweicheng 2025-01-24 23:18 65浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 883浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 401浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 217浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦