什么是计算复杂度?

智能计算芯世界 2021-11-18 08:00


“集智百科精选”是一个长期专栏,持续为大家推送复杂性科学相关的基本概念和资源信息。作为集智俱乐部的开源科学项目,集智百科希望打造复杂性科学领域最全面的百科全书,欢迎对复杂性科学感兴趣、热爱知识整理和分享的朋友加入!


本文是对集智百科中“计算复杂度”词条的摘录,参考资料及相关词条请参阅百科词条原文。


本词条由集智俱乐部众包生产,难免存在纰漏和问题,欢迎大家留言反馈或者前往对应的百科词条页面进行修改,一经修改,可以获得对应的积分奖励!


目录

一、资源

二、复杂度:输入规模的函数

三、渐近复杂度

四、计算模型

五、问题复杂度(下限)

六、在算法设计中的应用

七、编者推荐

八、百科项目志愿者招募


在计算机科学 computer science中,一个算法 algorithm的计算复杂度或简单的复杂度就是运行这个算法所需要的资源量,特别是时间(CPU占用时间)和空间(内存占用空间)需求。


由于运行一个算法所需的资源量通常随输入规模的大小而变化,因此复杂度通常用函数 f(n)表示,其中n是输入量的大小,f(n)是最坏情况复杂度 worst-case complexity(输入大小为 n时所需的资源量的最大值) ,或是平均情况复杂度 average-case complexity(资源总量相对于n的所有占用的平均值)。时间复杂度 Time complexity通常表示为对一个输入值长度所需基本操作(通常是加法操作或者乘法操作)的数量。我们假设基本操作在一台计算机上只占用一个不变的时间量(比如1纳秒),而在另一台计算机上运行时,只根据一个常量因子进行改变(比如k*1纳秒)。空间复杂度 space complexity通常表示为算法对一个输入值长度所需的内存量。


对一个有明确定义的算法的复杂度进行的研究叫做算法分析 analysis of algorithm,而对问题的复杂度研究叫做计算复杂度理论 computation complexity theory分析。举个例子,怎样把一串数字从小到大进行排序,是一个问题;而针对这一问题,我们有多种明确定义的算法,如选择排序,归并排序等。假设我们有n个数字,那么排序问题的复杂度就是nlogn,而选择排序的复杂度是n^2,归并排序的复杂度是6nlogn。


这两个领域是高度相关的,因为算法的复杂度一直是该算法所求解问题复杂度的上限 upper bound。




资源




时间

最常被考虑的资源是时间。当没有明确说明时,“复杂度”通常意味着时间复杂度而非空间复杂度。


在复杂度理论中不使用通常的时间单位(秒、分等),因为它们过于依赖于特定计算机的选择和技术的演变。例如,今天的计算机执行算法的速度明显快于20世纪60年代的计算机; 然而,这不是算法的固有特征,而是计算机硬件技术进步的结果。复杂度理论旨在量化算法的内在时间需求,也就是算法对任何计算机的基本时间约束。这是通过统计在计算过程中执行的基本操作数量来实现的。这些基本操作假定在给定的机器上占用常量时间(即不受输入大小的影响),通常被称为步骤。


空间

另一个重要的资源是运行算法所需的计算机内存 computer memory大小。


其他

算术运算 arithmetic operations的数量是另一种常用的资源。在这种情况下,人们会谈到算术复杂度。如果已知一个计算过程中出现的数的二进制表示 binary representation长度的上限 upper bound,时间复杂度通常是该算术复杂度乘以一个常数因子。


对于许多算法,在计算过程中使用的整数大小是没有界限的,并且考虑算术运算占用一个常量时间是不现实的。因此,时间复杂度,在此上下文中通常称为 位复杂度 bit complexity,可能远远大于算术复杂度。例如,根据通常的算法 高斯消去法 Gaussian elimination 计算一个n×n 整数矩阵行列式 的算术复杂度是O(n^3)。因为系数的大小可能在计算过程中呈指数增长,相同算法的位复杂度是指数级的。另一方面,如果这些算法与多模运算相结合,位复杂度可以降低到O~(n4)。


在排序 sorting和搜索 searching中,通常考虑的资源是需要做几次比较大小。如果数据组织得当,这通常是一个很好的时间复杂度测量方法。




复杂度:输入规模的函数




为了清晰起见,本节只考虑时间复杂度,不过所有内容(稍加修改)也都适用于其他资源的复杂度。


计算一个算法对于所有可能输入的所需要的步骤数是不可能的。由于复杂度通常随着输入的规模而增加,复杂度通常表示为输入值 n 长度(以比特 bit为单位)的函数。因此,复杂度是一个关于 n 的函数。然而,对于同样长度的不同输入,算法的复杂度可能会大不相同。因此,有多种不同的复杂度函数被广泛使用。


最坏情况复杂度 worst-case complexity是对所有输入n长度中的最大复杂度,平均情况复杂度 average-case complexity是对所有输入n长度中的平均复杂度。一般来说,如果使用“复杂度”一词且不进行进一步说明 ,即考虑最坏情况时间复杂度。




渐近复杂度




通常很难精确计算最坏情况和平均情况复杂度。此外,由于计算机或计算模型的任何变化都会改变复杂度,精确的复杂度值没多少实际意义。更多地,对于较小的n值,资源的使用并不是关键。因此对于小 n,人们通常更在乎一个算法的简单性和易实现性,而非复杂度。


由于这些原因,人们通常把注意力集中在大n的复杂度上,即输入规模趋于无穷大的渐近行为 asymptotic behavior上。因此,复杂度通常用大O符号 big O notation来表示。


例如,通常整数乘法 multiplication的复杂度是O(n^2),这意味着存在一个常数Cu,使得两个最多n位的整数乘法可以在小于Cun^2的时间内完成。这个界限是尖锐的,因为最坏情况复杂度和平均情况复杂度是Ω(n^2)。意味着存在一个常数Cl,使得这些复杂度比Cln^2大。




计算模型




复杂度的评估依赖于计算模型 model of computation的选择,包括定义在一个时间单位内完成的基本操作。当没有明确指定时,默认使用的计算模型是多带图灵机 multitape Turing machine。


确定性模型

一个确定性模型 deterministic model 的计算是一种机器的后续状态和要执行的操作完全由前面的状态决定的计算模型。历史上,最早的确定性模型是递归函数 recursive functions、 lambda演算 lambda calculus和图灵机 Turing machines。随机存取机器 Random access machine (也称 RAM-machines)的模型也被广泛使用,更接近真实的计算机 computer。


当计算模型没有被指定时,通常假设它是一个多带图灵机 multitape Turing machine。对于大多数算法,在多带图灵机上的时间复杂度与在RAM-machines上的相同,尽管可能需要注意如何将数据存储在内存中,以确保这种等价性。


非确定性计算

在非确定性计算模型 non-deterministic model of computation中,例如不确定的图灵机 non-deterministic Turing machine,在计算的某些步骤中可能会进行一些选择。在复杂度理论中,非确定性时间复杂度即为,同时考虑所有可能的选择且做出最佳选择时所需的时间。换句话说,我们认为计算是多个(相同的)处理器上同时进行的,而不确定计算时间是第一个完成计算的处理器所花费的时间。这种并行性在一定程度上可以通过运行特定量子算法 quantum algorithm的叠加纠缠态 entangled state来实现量子计算 quantum computing。例如小整数上的肖尔因式分解 Shor's factorization。


即使这样的计算模型还不现实,它仍然具有重要的理论意义,主要涉及P = NP? 问题。如果一个问题可以在确定性图灵机上以多项式时间 polynomial time求解,则该问题属于 P 类问题。如果一个问题可以在非确定性机器上以多项式时间 polynomial time求解,则该问题属于 NP 类问题。我们知道所有P类问题都属于NP类问题,但是否所有NP类问题也属于P类问题?亦即,是否P类问题和NP类问题是等价的?这就是所谓的 P=NP? 问题


如果一个问题属于 NP 问题,且不比其他任何 NP 问题简单,则称该问题为 NP完全问题 NP-complete。许多组合 combinatorial问题,例如背包问题 Knapsack problem、旅行推销员问题 travelling salesman problem和布尔可满足性问题 Boolean satisfiability problem都是NP完全问题。对于所有这些问题,最著名的算法具有指数复杂度。如果这些问题中的任何一个都可以在确定性机器上在多项式时间内求解,那就意味着所有 NP 问题都可以在多项式时间内求解,我们立即可以得出结论:P = NP。一般认为P类问题和NP类问题是等价的,即所有NP类问题都有在确定性图灵机上以多项式时间解决的方法。现在我们主要的猜想是,NP 问题的最坏情况本质上是难以解决的,即P≠NP。


并行和分布式计算

并行处理器和分布式计算处理器由同时工作的多个处理器组成。不同模型之间的差异主要体现在处理器之间的信息传输方式上。通常情况下,在并行计算中处理器之间的数据传输非常快,而在分布式计算中,数据传输通过网络完成,因此速度要慢得多。


在N个处理器上进行计算所需的时间至少是单个处理器所需时间的N的商。但实际上,这个理论上的最优界限永远不可能达到,由于有些子任务不能并行化,部分处理器不得不先等待另一个处理器的结果。


因此,主要的复杂度问题是如何设计算法,使得计算时间与处理器数量的乘积尽可能接近在单个处理器上进行同一计算所需的时间。


量子计算

量子计算机 quantum computer是一种基于量子力学 quantum mechanics的计算机。丘奇-图灵理论 Church–Turing thesis适用于量子计算机,也就是说,任何可以由量子计算机解决的问题也可以由图灵机解决。然而,有些问题理论上可以用量子计算机以极低的时间复杂度 time complexity解决,而用传统图灵机则无法解决。由于没有人知道如何建造一台高效的量子计算机,目前这纯粹只是理论上可行的。


量子复杂度理论 Quantum complexity theory研究用量子计算机解决的问题的复杂度类。它主要用于后量子密码学 post-quantum cryptography,包括设计能抵御量子计算机攻击的安全协议 cryptographic protocol。




问题复杂度(下限)




问题的复杂度是解决问题算法(包括未知算法)复杂度的下确界 infimum,即解决这个问题所需的最少时间。因此,问题的复杂度比任何解决该问题的算法的复杂度都要小。


用大O符号 big O notation表示的每一个复杂度都是算法的复杂度,也是相应问题的复杂度。


另一方面,问题复杂度的非平凡(nontrivial)下界一般难以获得,并且获得这种下界的方法很少。


为了解决大多数问题,往往需要与数据大小成比例的时间来读取所有输入数据。因此,这些问题的复杂度至少是线性的 linear,使用大欧米茄符号 big omega notation,记为复杂度Ω(n)。


一些问题的解可能是非常大的,特别是计算机代数 computer algebra和计算代数几何 computational algebraic geometry。在这种情况下,复杂度以输出的最大长度为下界,因此输出必须被写入。例如,如果解的个数是有限的,n个d次不确定多项式方程组 system of n polynomial equations of degree d in indeterminates 可能有多达d^n个复解(这是贝佐定理 Bézout's theorem)。由于这些解必须被写入,所以这个问题的复杂度是Ω(d^n)。对于这个问题,已知一个复杂度为d^(O(n))的算法,因此可以认为是渐近拟最优的。


获得复杂度下限的标准方法包括将一个问题转化为另一个问题。更准确地说,假设一个大小为n的问题A可以编码成大小为f(n)的问题B,则问题A的复杂度为Ω(g(n))。不失一般性地,我们可以假设函数f随着n的增加而增加,并且有一个反函数 inverse function,那么问题B的复杂度就是Ω(g(h(n)))。这个方法可以用来证明,若P ≠ NP(一个未解决的猜想) ,对于每个正整数k,每个NP完全问题 NP-complete problem的复杂度都是Ω(n^k)。




在算法设计中的应用




评估算法的复杂度是算法设计 algorithm design的一个重要组成部分,因为这给出了一个算法关于预期性能的有用信息。


有一个常见的误解,由于摩尔定律 Moore's law假定了现代计算机功率的指数增长 exponential growth,对算法复杂度的评估将变得不那么重要。这是错误的,因为这种功率增加同样也会容使得处理较大的输入数据(大数据)成为可能。例如,当一个人想要按字母顺序对数百个条目的列表进行排序时,比如一本书的参考书目,任何算法都应该在不到一秒的时间内就能正常工作。另一方面,对于一个包含100万个条目的列表(例如一个大城镇的电话号码) ,需要O(n^2)次比较的基本算法,须进行1万亿次比较运算,即以每秒1000万次的速度进行比较需要大约3个小时。另一方面,快速排序和合并排序 只需要nlog2n次比较(前者为平均情况复杂度,后者为最坏情况复杂度)。这大约是3000万次比较,以每秒1000万次比较计算,只需要3秒钟。


因此,对复杂度的评估允许在编程实现之前就消除许多低效率的算法。这也可用于在不用测试所有变量的情况下调优复杂的算法。通过确定复杂算法中最复杂的步骤,对复杂度的研究还可以将重点放在这些步骤上,从而提高实现的效率。




编者推荐




全文下载:操作系统产业完全解析
机器人操作系统的实践与思考

面向AIoT的RISC-V原生操作系统研究

深度报告:RISC-V异构IoT全新架构

ARM系列处理器应用技术完全手册

相关下载:CPU和GPU研究框架合集
1、行业深度报告:GPU研究框架

2、信创产业研究框架

3、ARM行业研究框架

4、CPU研究框架

5、国产CPU研究框架

6、行业深度报告:GPU研究框架


Arm架构服务器的开源应用

Arm架构服务器和存储

服务器硬件体系架构浅析
服务器市场现状研究


2021年信创产业发展报告

2020信创发展研究报告

信创研究框架

信创产业系列专题(总篇)

2021年中国信创生态研究报告

中国信创产业发展白皮书(2021)

异构芯片研究框架合集


本号资料全部上传至知识星球,更多内容请登录智能计算芯知识(知识星球)星球下载全部资料


版权声明

本文来源:集智俱乐部,版权属于原作者,仅用于学术分享



免责申明:本号聚焦相关技术分享,内容观点不代表本号立场,可追溯内容均注明来源,发布文章若存在版权等问题,请留言联系删除,谢谢。



电子书<服务器基础知识全解(终极版)>更新完毕,知识点深度讲解,提供182页完整版下载。

获取方式:点击“阅读原文”即可查看PPT可编辑版本和PDF阅读版本详情。



温馨提示:

请搜索“AI_Architect”或“扫码”关注公众号实时掌握深度技术分享,点击“阅读原文”获取更多原创技术干货。


智能计算芯世界 聚焦人工智能、芯片设计、异构计算、高性能计算等领域专业知识分享.
评论
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 115浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 180浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 204浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 140浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 604浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 137浏览
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 40浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 138浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 109浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 347浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 275浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 230浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 178浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦