10步法则:实用的MOSFET选型方法

传感器技术 2019-03-18 18:00


1、功率MOSFET选型第一步:P管,还是N管?

 

功率MOSFET有二种类型:N沟道和P沟道,在系统设计的过程中选择N管还是P管,要针对实际的应用具体来选择,N沟道MOSFET选择的型号多,成本低;P沟道MOSFET选择的型号较少,成本高。如果功率MOSFET的S极连接端的电压不是系统的参考地,N沟道就需要浮地供电电源驱动、变压器驱动或自举驱动,驱动电路复杂;P沟道可以直接驱动,驱动简单。


需要考虑N沟道和P沟道的应用主要有:


(1)笔记本电脑、台式机和服务器等使用的给CPU和系统散热的风扇,打印机进纸系统电机驱动,吸尘器、空气净化器、电风扇等白家电的电机控制电路,这些系统使用全桥电路结构,每个桥臂上管可以使用P管,也可以使用N管。


(2)通讯系统48V输入系统的热插拨MOSFET放在高端,可以使用P管,也可以使用N管。


(3)笔记本电脑输入回路串联的、起防反接和负载开关作用的二个背靠背的功率MOSFET,使用N沟道需要控制芯片内部集成驱动的充电泵,使用P沟道可以直接驱动。


参见文章:功率MOSFET选型第一步:P管,还是N管?

 

2、选取封装类型


功率MOSFET的沟道类型确定后,第二步就要确定封装,封装选取原则有:


(1)温升和热设计是选取封装最基本的要求


不同的封装尺寸具有不同的热阻和耗散功率,除了考虑系统的散热条件和环境温度,如是否有风冷、散热器的形状和大小限制、环境是否封闭等因素,基本原则就是在保证功率MOSFET的温升和系统效率的前提下,选取参数和封装更通用的功率MOSFET。


有时候由于其它条件的限制,需要使用多个MOSFET并联的方式来解决散热的问题,如在PFC应用、电动汽车电机控制器、通讯系统的模块电源次级同步整流等应用中,都会选取多管并联的方式。


如果不能采用多管并联,除了选取性能更优异的功率MOSFET,另外可以采用更大尺寸的封装或新型封装,比如在一些ACDC电源中将TO220改成TO247封装;在一些通讯系统的电源中,采用DFN8*8的新型封装。


(2)系统的尺寸限制


有些电子系统受制于PCB的尺寸和内部的高度,如通讯系统的模块电源由于高度的限制通常采用DFN5*6、DFN3*3的封装;在有些ACDC的电源中,使用超薄设计或由于外壳的限制,装配时TO220封装的功率MOSFET管脚直接插到根部,高度的限制不能使用TO247的封装。有些超薄设计直接将器件管脚折弯平放,这种设计生产工序会变复杂。


在大容量的锂电池保护板的设计中,由于尺寸限制极为苛刻,现在大多使用芯片级的CSP封装,尽可能的提高散热性能,同时保证最小的尺寸。


(3)公司的生产工艺


TO220有二种封装:裸露金属的封装和全塑封装,裸露金属的封装热阻小,散热能力强,但在生产过程中,需要加绝缘坠,生产工艺复杂成本高,而全塑封装热阻大,散热能力弱,但生产工艺简单。


为了减小锁螺丝的人工工序,近几年一些电子系统采用夹子将功率MOSFET夹在散热片中,这样就出现了将传统的TO220上部带孔的部分去除的新的封装形式,同时也减小的器件的高度。


(4)成本控制


早期很多电子系统使用插件封装,这几年由于人工成本增加,很多公司开始改用贴片封装,虽然贴片的焊接成本比插件高,但是贴片焊接的自动化程度高,总体成本仍然可以控制在合理的范围。在台式机主板、板卡等一些对成本极其敏感的应用中,通常采用DPAK封装的功率MOSFET,因为这种封装的成本低。


因此在选择功率MOSFET的封装时,要结合自己公司的风格和产品的特点,综合考虑上面因素。


3、选取耐压BVDSS


在大多数情况下,似乎选取功率MOSFET的耐压对于很多工程师来说是最容易的一件事情,因为设计的电子系统输入电压是相对固定的,公司选取特定的供应商的一些料号,产品额定电压也是固定的。比如在笔记本电脑适配器、手机充电器中,输入为90-265V的交流,初级通常选用600V或650V的功率MOSFET;笔记本电脑主板输入电压19V,通常选用30V的功率MOSFET,根本不需要任何的考虑。


数据表中功率MOSFET的击穿电压BVDSS有确定的测试条件,在不同的条件下具有不同的值,而且BVDSS具有正温度系数,在实际的应用中要结合这些因素综合考虑。


参见文章:理解功率MOSFET的BVDSS


很多资料和文献中经常提到:如果系统中功率MOSFET的VDS的最高尖峰电压如果大于BVDSS,即便这个尖峰脉冲电压的持续只有几个或几十个nS,功率MOSFET也会进入雪崩从而发生损坏


不同于三极管和IGBT,功率MOSFET具有抗雪崩的能力,而且很多大的半导体公司功率MOSFET的雪崩能量在生产线上是全检的、100%检测,也就是在数据中这是一个可以保证的测量值,雪崩电压通常发生在1.2-1.3倍的BVDSS,而且持续的时间通常都是uS、甚至mS级,那么持续只有几个或几十个nS、远低于雪崩电压的尖峰脉冲电压是不会对功率MOSFET产生损坏的。


为什么在实际的设计中,要求在最极端的情况下,功率MOSFET的最大VDS电压必须低于BVDSS、同时还要有一定的降额,如5%,10%,甚至20%的降额?


原因在于:保证电子系统的可生产性,以及在大批量生产时候的可靠性。


任何电子系统的设计,实际的参数都会有一定的变化范围,有时候很难保证多个极端的情况碰到一起,从而对系统产生问题,特别是在高温的条件下,功率器件以及系统的其它元件温度系数的漂移会产生一些难以想象的问题,降额以及设计的裕量可以尽可能的减小在这些极端条件下发生损坏的问题。


4、由驱动电压选取VTH


不同电子系统的功率MOSFET选取的驱动电压并不相同,ACDCD电源通常使用12V的驱动电压,笔记本的主板DCDC变换器使用5V的驱动电压,因此要根据系统的驱动电压选取不同阈值电压VTH的功率MOSFET。


数据表中功率MOSFET的阈值电压VTH也有确定的测试条件,在不同的条件下具有不同的值,VTH具有负温度系数。不同的驱动电压VGS对应着不同的导通电阻,在实际的应用中要考虑温度的变化,既要保证功率MOSFET完全开通,同时又要保证在关断的过程中耦合在G极上的尖峰脉冲不会发生误触发产生直通或短路。


参见文章:理解MOSFET的VTH:栅极感应电压尖峰,会导致直通损坏吗?

电源系统低温不开机,你遇到过吗:理解VTH温度系数

 

5、选取导通电阻RDSON注意:不是电流


很多时候工程师关心RDSON,是因为RDSON和导通损耗直接相关,RDSON越小,功率MOSFET的导通损耗越小、效率越高、温升越低。同样的,工程师尽可能沿用以前项目中或物料库中现有的元件,对于RDSON的真正的选取方法并没有太多的考虑。当选用的功率MOSFET的温升太低,出于成本的考虑,会改用RDSON大一些的元件;当功率MOSFET的温升太高、系统的效率偏低,就会改用RDSON小一些的元件,或通过优化外部的驱动电路,改进散热的方式等来进行调整。


想一想:如果是一个全新的项目,没有以前的项目可循,那么如何选取功率MOSFET的RDSON


这里作者介绍一个方法给大家:功耗分配法


当设计一个电源系统的时候,已知条件有:输入电压范围,输出电压/输出电流,效率,工作频率,驱动电压,当然还有其它的技术指标,和功率MOSFET相关的主要是这些参数。步骤如下:

 

(1)根据输入电压范围,输出电压/输出电流,效率,计算系统的最大损耗。


(2)功率回路的杂散损耗,非功率回路元件的静态损耗,IC的静态损耗以及驱动损耗,做大致的估算,经验值可以占总损耗的10%-15%。如果功率回路有电流取样电阻,计算电流取样电阻的功耗。总损耗减去上面的这些损耗,剩下部分就是功率器件、变压器或电感的功率损耗。


将剩下的功率损耗按一定的比例分配到功率器件和变压器或电感中,不确定的话,按元件数目平均分配,这样就得到每个MOSFET的功率损耗。


(3)将MOSFET的功率损耗,按一定的比例分配给开关损耗和导通损耗,不确定的话,平均分配开关损耗和导通损耗。


(4)由MOSFET导通损耗和流过的有效值电流,计算最大允许的导通电阻,这个电阻是MOSFET在最高工作结温的RDSON


数据表中功率MOSFET的RDSON标注有确定的测试条件,在不同的定义的条件下具有不同的值,测试的温度为:TJ=25℃,RDSON具有正温度系数,因此根据MOSFET最高的工作结温和RDSON温度系数,由上述RDSON计算值,得到25℃温度下对应的RDSON


(5)由25℃的RDSON来选取型号合适的功率MOSFET,根据MOSFET的RDSON实际参数,向下或向上修整。


通过以上步骤,就初步选定功率MOSFET的型号和RDSON参数。


很多资料和文献中,经常计算系统的最大电流,然后进行降额,由功率MOSFET数据表的电流值来选取器件,这种方法是不对的


功率MOSFET的电流是一个计算值,而且是基于TC=25℃,也没有考虑开关损耗,因此这种方法和实际的应用差距太大,没有参考价值。在一些有大电流冲击要求有短路保护的应用中,会校核数据表中的最大漏极脉冲电流值及其持续时间,这个和选取RDSON没有直接的关系。


参见文章:理解功率MOSFET的RDS(ON) 温度系数特性

功率MOSFET连续漏极电流额定值接合线限制

脉冲漏极电流IDM及短路保护

理解功率MOSFET管的电流

令人纠结的技术指标:电机驱动短路保护时间的设定


6、选取开关特性:Crss、Coss、Ciss;Qg、Qgd、Qoss


功率MOSFET在开关过程中产生开关损耗,开关损耗主要和这些开关特性参数有关。QG影响驱动损耗,这一部分损耗并不消耗在功率MOSFET中,而且是消耗在驱动IC中。QG越大,驱动损耗越大。


基于RDSON选取了功率MOSFET的型号后,这些开关特性参数都可以在数据表中查到,然后根据这些参数计算开关损耗。


参见文章:功率MOSFET的时间相关的电容Coss(tr)、能量相关输出电容Coss(er)

理解功率MOSFET的Coss产生损耗

功率MOSFET的栅极电荷特性

理解功率MOSFET的寄生电容

功率MOSFET的开关损耗:开通损耗

功率MOSFET的开关损耗:关断损耗

 

7、热设计及校核


根据选取的功率MOSFET的数据表和系统的工作状态,计算其导通损耗和开关损耗,由总的功率损耗和工作的环境温度计算MOSFET的最高结温,校核其是否在设计的范围。所有条件基于最恶劣的条件,然后由计算的结果做相应的调整。


如果总的损耗偏大,大于分配的功率损耗,那么就要重新选取其它型号的功率MOSFET,可以查看比选取的功率MOSFE的RDSON更大或更小的其它型号,再次校核总的功率损耗,上述过程通常要配合第5、6步,经过几次的反复校验,最后确定与设计相匹配的型号,直到满足设计的要求。


有时候由于产品型号的限制找不到参数合适的产品,可以采用以下的方法:


(1)使用多管并联的方式,来解决散热和温升的问题。


(2)将功率损耗重新分配,变压器或电感、其它的功率元件分配更多的功耗。更改功率分配的时候,也要保证其它元件的温升满足系统设计要求。


(3)如果系统允许,改变散热的方式或加大散热器的尺寸。


(4)其它因素,调整工作频率、更改电路结构等,如PFC采用交错结构,采用LLC或其它软开关电路。


参见文章:功率MOSFET的热阻特性

 

8、校核二极管特性


在桥式电路中如全桥、半桥、LLC以及BUCK电路的下管,有内部寄生二极管的反向恢复的问题,最简单的方法就是采用内部带快恢复二极管的功率MOSFET,如果内部不带快恢复二极管,就要考虑内部寄生二极管的反向恢复特性:Irrm、Qrr、trr、trr1/trr2,如trr要小于250nS,这些参数影响着关断的电压尖峰、效率,以及可靠性,如在LLC的起动、短路中,系统进入容性模式、若二极管反向恢复性能较差,容易产生上下管直通而损坏的问题。如果控制器具有容性模式保护功能,就不用考虑这个因素。


9、雪崩能量及UIS、dv/dt


雪崩能量及测试的条件参考下面的文章,有非常详细的详明。除了反激和一些电机驱动的应用,大多结构不会发生这种单纯的电压箝位的雪崩,很多应用情况下,二极管反向恢复过程中dv/dt、过温以及大电流的综合作用产生动态雪崩击穿损坏,相关的内容可参考以后推送的文章。


参见文章:理解功率MOSFET的UIS及雪崩能量:第一篇

理解功率MOSFET的UIS及雪崩能量:第二篇

功率MOSFET重复雪崩电流及重复雪崩能量:第三篇


10、其它参数


内部RG的大小、负载开关和热插拨工作在线性区的问题、SOA特性,和EMI相关的参数、等等。


参见文章:功率MOSFET安全工作区SOA:真的安全吗?

理解功率MOSFET的RDS(ON)负温度系数特性




松哥电源(微信公众号:adlsong2016):探讨电源理论,分析电源应用,分享电源新思维!更多技术文章,请关注以下公众号

                          


AOS产品,关注下面公众号


传感器技术 制造业的未来是智能化,智能化的基础就是传感器; 互联网的方向是物联网,物联网的基石也是传感器; 关注传感器技术,获得技术资讯、产品应用、市场机会,掌握最黑科技,为中国工业导航。
评论
  • Snyk 是一家为开发人员提供安全平台的公司,致力于协助他们构建安全的应用程序,并为安全团队提供应对数字世界挑战的工具。以下为 Snyk 如何通过 CircleCI 实现其“交付”使命的案例分析。一、Snyk 的挑战随着客户对安全工具需求的不断增长,Snyk 的开发团队面临多重挑战:加速交付的需求:Snyk 的核心目标是为开发者提供更快、更可靠的安全解决方案,但他们的现有 CI/CD 工具(TravisCI)运行缓慢,无法满足快速开发和部署的要求。扩展能力不足:随着团队规模和代码库的不断扩大,S
    艾体宝IT 2025-01-10 15:52 115浏览
  • 在当前人工智能(AI)与物联网(IoT)的快速发展趋势下,各行各业的数字转型与自动化进程正以惊人的速度持续进行。如今企业在设计与营运技术系统时所面临的挑战不仅是技术本身,更包含硬件设施、第三方软件及配件等复杂的外部因素。然而这些系统往往讲究更精密的设计与高稳定性,哪怕是任何一个小小的问题,都可能对整体业务运作造成严重影响。 POS应用环境与客户需求以本次分享的客户个案为例,该客户是一家全球领先的信息技术服务与数字解决方案提供商,遭遇到一个由他们所开发的POS机(Point of Sal
    百佳泰测试实验室 2025-01-09 17:35 155浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 132浏览
  • 1月9日,在2025国际消费电子展览会(CES)期间,广和通发布集智能语音交互及翻译、4G/5G全球漫游、随身热点、智能娱乐、充电续航等功能于一体的AI Buddy(AI陪伴)产品及解决方案,创新AI智能终端新品类。AI Buddy是一款信用卡尺寸的掌中轻薄智能设备,为用户带来实时翻译、个性化AI语音交互助手、AI影像识别、多模型账户服务、漫游资费服务、快速入网注册等高品质体验。为丰富用户视觉、听觉的智能化体验,AI Buddy通过蓝牙、Wi-Fi可配套OWS耳机、智能眼镜、智能音箱、智能手环遥
    物吾悟小通 2025-01-09 18:21 133浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 135浏览
  • 职场是人生的重要战场,既是谋生之地,也是实现个人价值的平台。然而,有些思维方式却会悄无声息地拖住你的后腿,让你原地踏步甚至退步。今天,我们就来聊聊职场中最忌讳的五种思维方式,看看自己有没有中招。1. 固步自封的思维在职场中,最可怕的事情莫过于自满于现状,拒绝学习和改变。世界在不断变化,行业的趋势、技术的革新都在要求我们与时俱进。如果你总觉得自己的方法最优,或者害怕尝试新事物,那就很容易被淘汰。与其等待机会找上门,不如主动出击,保持学习和探索的心态。加入优思学院,可以帮助你快速提升自己,与行业前沿
    优思学院 2025-01-09 15:48 138浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 109浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 95浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 143浏览
  • 车机导航有看没有懂?智能汽车语系在地化不可轻忽!随着智能汽车市场全球化的蓬勃发展,近年来不同国家地区的「Automotive Localization」(汽车在地化)布局成为兵家必争之地,同时也是车厂在各国当地市场非常关键的营销利器。汽车在地化过程中举足轻重的「汽车语系在地化」,则是透过智能汽车产品文字与服务内容的设计订制,以对应不同国家地区用户的使用习惯偏好,除了让当地车主更能清楚理解车辆功能,也能进一步提高品牌满意度。客户问题与难处某车厂客户预计在台湾市场推出新一代车款,却由于车机导航开发人
    百佳泰测试实验室 2025-01-09 17:47 95浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 132浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 156浏览
  • HDMI 2.2 规格将至,开启视听新境界2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新HDMI规范为规模庞大的 HDMI 生态系统带来更多选择,为创建、分发和体验理想的终端用户效果提供更先进的解决方案。新技术为电视、电影和游戏工作室等内容制作商在当前和未来提供更高质量的选择,同时实现多种分发平台。96Gbps的更高带宽和新一代 HDMI 固定比率速率传输(Fixed Rate Link)技术为各种设备应用提供更优质的音频和视频。终端用户显示器能以最
    百佳泰测试实验室 2025-01-09 17:33 173浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦