【干货分享】开关电源调试时最常见的10个问题

凡亿PCB 2021-11-09 09:37


【干货免费领】

Allegro软件操作速成实战130讲笔记:点我

ADI智库力作《267页电源知识精选》:点我

凡亿学员 Altium 124讲63页超长学习笔记:点我

70G硬件设计资料汇总免费送:点我

射频没有前景?工程师该如何择业:点我


1、变压器饱和


变压器饱和现象

在高压或低压输入下开机(包含轻载,重载,容性负载),输出短路,动态负载,高温等情况下,通过变压器(和开关管)的电流呈非线性增长,当出现此现象时,电流的峰值无法预知及控制,可能导致电流过应力和因此而产生的开关管过压而损坏。


变压器饱和时的电流波形


容易产生饱和的情况:
1)变压器感量太大;
2)圈数太少;
3)变压器的饱和电流点比IC的最大限流点小;
4)没有软启动。


解决办法:
1)降低IC的限流点;
2)加强软启动,使通过变压器的电流包络更缓慢上升。




2、Vds过高


Vds的应力要求:


最恶劣条件(最高输入电压,负载最大,环境温度最高,电源启动或短路测试)下,Vds的最大值不应超过额定规格的90%


Vds降低的办法:

1)减小平台电压:减小变压器原副边圈数比;

2)减小尖峰电压:


a. 减小漏感:
变压器漏感在开关管开通时存储能量是产生这个尖峰电压的主要原因,减小漏感可以减小尖峰电压。


b. 调整吸收电路:
①使用TVS管;
②使用较慢速的二极管,其本身可以吸收一定的能量(尖峰);
③插入阻尼电阻可以使得波形更加平滑,利于减小EMI。



3、IC 温度过高


原因及解决办法:

1)内部的MOSFET损耗太大:
开关损耗太大,变压器的寄生电容太大,造成MOSFET的开通、关断电流与Vds的交叉面积大。解决办法:增加变压器绕组的距离,以减小层间电容,如同绕组分多层绕制时,层间加入一层绝缘胶带(层间绝缘) 。


2)散热不良:
IC的很大一部分热量依靠引脚导到PCB及其上的铜箔,应尽量增加铜箔的面积并上更多的焊锡


3)IC周围空气温度太高:
IC应处于空气流动畅顺的地方,应远离零件温度太高的零件。



4、空载、轻载不能启动


现象:
空载、轻载不能启动,Vcc反复从启动电压和关断电压来回跳动。


原因:
空载、轻载时,Vcc绕组的感应电压太低,而进入反复重启动状态。


解决办法:
增加Vcc绕组圈数,减小Vcc限流电阻,适当加上假负载。如果增加Vcc绕组圈数,减小Vcc限流电阻后,重载时Vcc变得太高,请参照稳定Vcc的办法。



5、启动后不能加重载


原因及解决办法:

1)Vcc在重载时过高
重载时,Vcc绕组感应电压较高,使Vcc过高并达到IC的OVP点时,将触发IC的过压保护,引起无输出。如果电压进一步升高,超过IC的承受能力,IC将会损坏。


2)内部限流被触发

a.限流点太低
重载、容性负载时,如果限流点太低,流过MOSFET的电流被限制而不足,使得输出不足。解决办法是增大限流脚电阻,提高限流点。


b.电流上升斜率太大
上升斜率太大,电流的峰值会更大,容易触发内部限流保护。解决办法是在不使变压器饱和的前提下提高感量。



6、待机输入功率大


现象:
Vcc在空载、轻载时不足。这种情况会造成空载、轻载时输入功率过高,输出纹波过大。


原因:

输入功率过高的原因是,Vcc不足时,IC进入反复启动状态,频繁的需要高压给Vcc电容充电,造成起动电路损耗。如果启动脚与高压间串有电阻,此时电阻上功耗将较大,所以启动电阻的功率等级要足够。


电源IC未进入Burst Mode或已经进入Burst Mode,但Burst 频率太高,开关次数太多,开关损耗过大。


解决办法:
调节反馈参数,使得反馈速度降低。



7、短路功率过大


现象:
输出短路时,输入功率太大,Vds过高。


原因:
输出短路时,重复脉冲多,同时开关管电流峰值很大,造成输入功率太大过大的开关管电流在漏感上存储过大的能量,开关管关断时引起Vds高。


输出短路时有两种可能引起开关管停止工作:

1)触发OCP这种方式可以使开关动作立即停止


a. 触发反馈脚的OCP;
b. 开关动作停止;
c. Vcc下降到IC关闭电压;
d. Vcc重新上升到IC启动电压,而重新启动。


2)触发内部限流

这种方式发生时,限制可占空比,依靠Vcc下降到UVLO下限而停止开关动作,而Vcc下降的时间较长,即开关动作维持较长时间,输入功率将较大。


a. 触发内部限流,占空比受限;
b. Vcc下降到IC关闭电压;
c. 开关动作停止;
d. Vcc重新上升到IC启动电压,而重新启动。


解决办法:
1)减少电流脉冲数,使输出短路时触发反馈脚的OCP,可以使开关动作迅速停止工作,电流脉冲数将变少。这意味着短路发生时,反馈脚的电压应该更快的上升。所以反馈脚的电容不可太大;


2)减小峰值电流。



8、空载,轻载输出纹波过大


现象:
Vcc在空载或轻载时不足。


原因:
Vcc不足时,在启动电压(如12V)和关断电压(如8V)之间振荡IC在周期较长的间歇工作,短时间提供能量到输出,接着停止工作较长的时间,使得电容存储的能量不足以维持输出稳定,输出电压将会下降。


解决方法:
保证任何负载条件下,Vcc能够稳定供给。


现象:
Burst Mode时,间歇工作的频率太低,此频率太低,输出电容的能量不能维持稳定。


解决办法:
在满足待机功耗要求的条件下稍微提高间歇工作的频率,增大输出电容。



9、重载、容性负载不能启动


现象:
轻载能够启动,启动后也能够加重载,但是重载或大容性负载情况下不能启动。


一般设计要求:
无论重载还是容性负载(如10000uF),输入电压最低还是最低,20mS内,输出电压必须上升到稳定值。


原因及解决办法(保证Vcc在正常工作范围内的前提下):


下面以容性负载C=10000uF为例进行分析,


按规格要求,必须有足够的能量使输出在20mS内上升到稳定的输出电压(如5V)。


E=0.5*C*V^2


电容C越大,需要在20mS内从输入传输到输出的能量更大。



以芯片FSQ0170RNA为例如图所示,阴影部分总面积S就是所需的能量。要增加面积S,办法是:


1)增大峰值电流限流点I_limit,可允许流过更大电感电流Id:将与Pin4相接的电阻增大,从内部电流源Ifb分流更小,使作为电流限制参考电压的PWM比较器正输入端的电压将上升,即允许更大的电流通过MOSFET/变压器,可以提供更大的能量。


2)启动时,增加传递能量的时间,即延长Vfb的上升时间(到达OCP保护点前)。



对这款FSQ0170RNA芯片,电感电流控制是以Vfb为参考电压的,Vfb电压的波形与电感电流的包络成正比。控制Vfb的上升时间即可控制电感包络的上升时间,即增加传递能量的时间。


IC的OCP功能是检测Vfb达到Vsd(如6V)实现的。所以要降低Vfb斜率,就可以延长Vfb的上升时间。


输出电压未达到正常值时,如果反馈脚电压Vfb已经上升到保护点,传递能量时间不够。重载、容性负载启动时,输出电压建立较慢,加到光耦电压较低,通过光耦二极管的电流小,光耦光敏管高阻态(趋向关断)的时间较长。IC内部电流源给与反馈脚相接的电容充电较快,如果Vfb在这段时间内上升到保护点(如6V),MOSFET将关断。输出不能达到正常值,启动失败。


解决办法:

使输出电压达到正常值时,反馈脚电压Vfb仍然小于保护点。使Vfb远离保护点而缓慢上升,或延长反馈脚Vfb上升到保护点的时间,即降低Vfb的上升斜率,使输出有足够的时间上升到正常值。


A.增大反馈电容(C9),可以将Vfb的上升斜率降低,如图所示,由D线变成A线。但是反馈电容太大会影响正常工作状态,降低反馈速度,使输出纹波变大。所以此电容不能变化太大。


B.由于A方法有不足,将一个电容(C7)串连稳压管(D6,3.3V)并联到反馈脚。此法不会影响正常工作,如B线所示,当Vfb


注意点:

1)增加反馈脚电容(包括稳压管串电容),对解决超大容性负载问题作用较小;


2)增大峰值电流限流点I_limit,同时也增加了稳态下的OCP点。需要在容性负载,输入最低情况下检查变压器是否会饱和;


3)如果要保持限流点,须使R10×C11更大,但在超大容性负载(10000uF)情况下,可能会增加5Vsb的上升时间超过20mS,此法需要检查动态响应是否受太大影响;


4)431的偏置电阻R10太小,431并联的C11要更大;


5)为了保证上升时间,增大OCP点和增大R10×C11方法可能要同时使用。



10、空载、轻载输出反跳


现象:
在输出空载或轻载时,关闭输入电压,输出(如5V)可能会出现如下图所示的电压反跳的波形。



原因:
输入关掉时,5V输出将会下降,Vcc也跟着下降,IC停止工作,但是空载或轻载时,巨大的PC电源大电容电压并不能快速下降,仍然能够给高压启动脚提供较大的电流使得IC重新启动,5V又重新输出,反跳。


解决方法:
在启动脚串入较大的限流电阻,使得大电容电压下降到仍然比较高的时候也不足以提供足够的启动电流给IC。


将启动接到整流桥前,启动不受大电容电压影响。输入电压关断时,启动脚电压能够迅速下降。


来源:网络
本文转载自网络,如涉及作品内容、版权和其它问题,请于联系工作人员微(biyao3798),我们将在第一时间和您对接删除处理!




点个在看你最好看

凡亿PCB 分享高速PCB设计、硬件设计、信号仿真、天线射频技术,提供技术交流、资料下载、综合提升电子应用开发能力!创立“凡亿教育”,致力做电子工程师的梦工厂,旨在赋能大学生、初中级电子工程师,倾力打造电子设计精品教育,逐步发展成系统
评论 (0)
  •  电磁铁的磁芯材质:软铁还是硬铁电磁铁的磁芯通常采用软铁材质,因其具有高磁导率和低矫顽力,使得电磁铁能够在通电时迅速产生强磁场,断电后磁场又能迅速消失。一、电磁铁与磁芯材质电磁铁是一种利用电流产生磁场的装置。其核心部件——磁芯,对电磁铁的性能有着至关重要的影响。在选择磁芯材质时,需要考虑多种因素,如磁导率、矫顽力、饱和磁化强度等。这些因素直接关系到电磁铁的工作效率、响应速度和能耗等方面。二、软铁与硬铁的特性软铁和硬铁是两种常见的磁性材料。软铁具有高磁导率和低矫顽力的特点,这意味着它容易
    锦正茂科技 2025-02-18 10:32 62浏览
  • 过去一年,厨电行业的AI竞赛进入“大模型时代”,各大品牌纷纷亮出了自己的杀手锏。老板电器的“食神大模型”、方太的“Healthy CookingGPT”轮番登场,两者都立志要用AI“重新定义厨房”。新的一年,大模型技术的不断成熟与迭代,AI将不再仅仅是概念上的炒作,而是真正融入到每一个厨房场景中。这场在厨电领域内悄然进行的“科技革命”无疑将步入一个更为深入且广泛的实践应用阶段,AI厨电狂欢开始了。AI厨电“燃”起来了众所周知,厨电行业的发展与房地产市场密切相关。随着房地产市场的调整,新房装修需求
    刘旷 2025-02-19 10:51 88浏览
  • 故障现象 一辆2013款奔驰S300L车,搭载272 946发动机,累计行驶里程约为15万km。车主反映,将挡位置于D挡,稍微释放一点制动踏板,车辆蠕动时车身明显抖动,类似气缸失火时的抖动,又类似手动变速器,离合器片不平,起步半离合时的那种抖动;完全释放制动踏板后,抖动现象消失,且车辆行驶无明显异常。为此更换过火花塞、点火线圈,清洗过燃油管路,故障依旧;接着又大修了自动变速器,并更换了液力变矩器,但故障依然存在,于是将车开至我厂进行检修。 故障诊断 接车后试车,确认故障现象与车主所述一
    虹科Pico汽车示波器 2025-02-19 14:14 94浏览
  • 随着国内市场的逐渐稳固,华为将目光投向了广阔的海外市场,开启了一段充满挑战与机遇的国际化征程。然而,华为在拓展海外市场时,遭遇了重重困难。文化差异带来的挑战不同国家和地区有着不同的文化背景、商业习惯和价值观,这使得华为在与当地客户、合作伙伴沟通和合作时面临诸多障碍。在欧洲,一些客户对产品的认证标准和售后服务有着非常严格的要求,并且注重商务活动中的礼仪和沟通方式。在机上欧洲通信市场竞争激烈,爱立信、诺基亚等本土企业在技术、品牌和市场份额上具有优势。而且欧洲各国的通信标准和监管政策不同,华为需要满足
    韭菜财经 2025-02-18 14:11 201浏览
  • 故障现象 一辆2010款路虎揽胜车,搭载5.0 L发动机,累计行驶里程约为16万km。车主反映,接通空调开关后,有时出风忽大忽小,有时不出风,有时要等2 min左右才出风;有时两三天出现一次,有时好几天才出现一次,故障没有规律。 故障诊断接车后试车,故障现象并未出现。使用故障检测仪检测,在空调控制单元(HVAC)中存储有故障代码“U1000-00 固态驾驶员保护微活-驾驶员已禁用”。查看该故障代码相关说明,可能的原因为中央接线盒输出电路对搭铁或电源短路,这与空调出风故障没有关联。如图1
    虹科Pico汽车示波器 2025-02-19 13:49 82浏览
  • 引言:为什么THA6能成为“国产芯”的破局者?当全球汽车行业因芯片短缺陷入“卡脖子”困境时,紫光同芯的THA6系列车规MCU横空出世,不仅填补了国产高端MCU的空白,更凭借“功耗控制”与“热管理”两大杀手锏,直接对标国际大厂英飞凌TC387。北京贞光科技作为授权代理商,提供硬件、软件SDK及技术支持,并可现场协助芯片选型和定制服务,助力客户项目高效落地。从动力域控制到智能驾驶系统,THA6的足迹遍布新能源汽车核心场景。数据显示,其主频高达400MHz,算力超4000 DMIPS,却能在-40℃至
    贞光科技 2025-02-19 17:17 19浏览
  • 嘿,大家好!在高压电子世界里摸爬滚打的朋友们,你们有没有遇到过这样的难题?那就是,如何选择适合高压环境的光颉精密电阻? 这可不是一个简单的问题,毕竟在高压环境下,电阻不仅要顶得住电压的“压力”,还得保证精度和稳定性,这要求可真不低。想想看,如果选错了电阻,就像给跑车装了个自行车轮,那能行吗?肯定不行!轻则电路性能大打折扣,重则电阻直接“罢工”,甚至引发更严重的后果。所以说,在高压应用中,选择一款靠谱的光颉精密电阻,那可是至关重要的。别担心,今天咱们就来好好聊聊,如何选择适合高压环境的光
    贞光科技 2025-02-18 17:28 116浏览
  • 概述        在上一篇文章中,我们了解了TC10规范的内容,并掌握了基于以太网链路的物理层休眠唤醒机制。为了确保不同厂商的设备在以太网休眠唤醒功能上的互操作性,OPEN Alliance制定了详细的测试规范。测试规范        针对以太网休眠唤醒机制的测试,包含在各个以太网速率下的IOP测试规范中,具体如下:《10BASE-T1S Interoperability Test Suite》《100BASE-T
    经纬恒润 2025-02-19 13:20 103浏览
  • 新技术的快速发展,其实与企业的管理机制、企业文化,甚至团队氛围、职场理念等方面非常相关!最近看到某平台有人吐槽00后实习生难带,进而又说到正常的工作安排被实习生莫名拉黑了。我就在人家的笔记评论区里写了我的观点(劝架风格),当然不出意料的就被更多的陌生人给围攻了!说起应届生的事情,可能是我一直长得年轻、又是个很较真很技术的人,我在多家企业里总被不同性格的老板拉去管“校企打杂”(所谓的领先企业应尽的社会责任,是连HR们都看不上的义务工作,给大学讲行业的意义和专业的意义)。我早就习惯了一种常见现象,像
    牛言喵语 2025-02-20 02:23 64浏览
  • 如何更有效地融合竞争、可持续与协作策略,从而彻底革新晶圆制造厂与半导体生产方式,进而提升效率与性能?这正是与electronica 2024同期举办的晶圆厂管理论坛所探讨的核心议题。该论坛堪称欧洲电子制造业领域最具影响力的盛会。艾迈斯欧司朗 “移动与照明” 业务线高级副总裁Wolfgang Lex与众多来自欧洲半导体及电子产业界的代表及论坛委员会成员齐聚一堂,共同分享行业洞见。在“汽车光子技术之旅”主题演讲中,Lex深入探讨了光智能(简称OI)在弥补人工智能与机器和、人之类间“最后一公里”距离中
    艾迈斯欧司朗 2025-02-19 19:23 10浏览
  • 概述        TC10 为OPEN Alliance 中的一个技术委员会小组,专注于研究基于车载以太网的休眠唤醒机制,旨在为汽车应用场景提供灵活的休眠唤醒解决方案。该小组提出的休眠唤醒规范(《TC10 Sleep/Wake-up Specification》,以下简称TC10规范)作为对IEEE 802.3系列规范的补充,详细定义了以太网PHY的休眠唤醒过程、新增服务原语和接口、时间参数、指令描述等内容。目前,TC10已经发布了适配10Ba
    经纬恒润 2025-02-18 14:30 127浏览
  • 清晨,闹钟准时响起,窗帘自动拉开,床灯随之亮起,音箱中则自动传出每日的早间新闻,从而唤醒熟睡中的你,而这只是智能家居中的冰山一角。作为人类群体追求更高生活品质的居住空间,智能家居正飞速普及至我们的日常生活之中,极大地提升了生活的便利性与舒适度。然而,随着单品智能向全屋智能的快速发展,不同智能家居设备的工作电压与通信频率等运行参数存在差异,它们共同运行在一个智能家居系统之中,其所产生的电气噪声与电磁干扰会互相影响,并形成潜在的安全隐患。例如,电气噪声可能导致线路过热,增加电气火灾的发生风险;电磁干
    华普微HOPERF 2025-02-18 10:48 88浏览
  • 2025,新一轮汽车行业“战争”开始,但这一次不是过往的“价格战”,而是新一轮的“智驾战”。近期,比亚迪董事长兼总裁王传福在比亚迪智能化战略发布会上表示:“比亚迪将全系搭载“天神之眼”高阶智驾系统,其中首批21款车型将陆续上市,包括秦家族、元家族、宋家族、海豹家族等。”具体来看,20万元以上、15万元至20万元、10万元至15万元级别的车型将全系标配“天神之眼”。10万元以下的车型多数将搭载“天神之眼”,包括海鸥、海豹05DM-i和第二代秦PLUS DM-i。智驾不是什么新鲜技术,但是在比亚迪之
    刘旷 2025-02-18 10:19 91浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦