【干货分享】使用示波器测量导线长度

凡亿PCB 2021-11-07 09:00

【干货免费领】

Allegro软件操作速成实战130讲笔记:点我

ADI智库力作《267页电源知识精选》:点我

凡亿学员 Altium 124讲63页超长学习笔记:点我

70G硬件设计资料汇总免费送:点我

射频没有前景?工程师该如何择业:点我





实验目的

使用示波器测量电线或导线的长度。




实验原理

时域反射计(Time-domain reflectometer or TDR)是一种通过观察导线中反射回来的波形从而对导线进行测量的电子仪器。

时域反射计的一个用处是可以用来测量电缆(双绞线、同轴电缆)的长度。

时域反射计大概长这样:

时域反射计

我们可以利用上一个实验 自制快速边沿脉冲发生器 中制作的脉冲发生器和一台示波器组成一套便宜的时域反射计设备,来测量导线的长度。

下面我们讲一下使用 TDR 测量导线长度的原理:

时域反射计原理

向未知长度的电缆的一头发射一个高速边沿脉冲信号,该信号会沿着该电缆向另一头传播(propagation ), 如果电缆的另一头是断开的,信号会在到达终点后反射(reflection)回来,回到出发点,使用示波器测量信号从发射到反射回来的时间差,可以计算出电缆的长度。

导线或者电缆只是传输能量的,导线本身并不消耗能量或者近似于不损耗能量。当射频信号到达导线末端,能量没有办法释放,就会沿着导线反传回来。就跟我们对着墙喊,声音碰到墙反传回来产生回音一个道理。

计算电缆长度的公式如下:

长度计算公式

L = 电缆长度,单位:米。

Δt = 信号从发射到反射回来的时间差,单位:秒。

C = 光速,单位:米/秒。

VF = 线缆速度因子,常量,无单位。

电信号在电缆中的速度无法达到理论上的光速,光速与电信号在电缆中实际速度之比称为速度因子(Velocity Factor or Velocity of Propagation)。缩写:VF 或者 VOP。

对于同轴电缆来说,同轴电缆的速度因子(VF)因电介质材料的不同而不同,列举如下:

电介质材料

速度因子

Solid Polyethylene or PE(实心聚乙烯)

0.659

Foam Polyethylene or FE(泡沫聚乙烯)

0.800

Air Space Polyethylene or ASP

0.842

Foam Polystyrene or FS(泡沫聚苯乙烯 )

0.910

Solid Teflon or ST(实心特氟纶或者聚四氟乙烯)

0.69-0.70

Air Space Teflon or AST

0.850-0.900

同轴电缆示意图





实验器材


  • 快速边沿脉冲发生器小板

  • 支持 10 纳秒或更小时基的示波器一台

  • 5V 直流电源

  • 待测试电缆

  • BNC 转接头

脉冲发生器小板

BNC 三通转接头 一公转母

BNC 转接头 公转公

BNC 母头转2位双绞线压接头

我们分别测试两种线缆的长度:

BNC 延长线

0.75平方 300/500V 电线





实验步骤

测试 BNC 延长线长度

  1. 将脉冲发生器和 BNC 转接头按如下方式连接:

连接信号小板和转接头

2. 将小板插入示波器,待测 BNC 延长线插入三通头,上电:

测试 BNC 延长线长度

3. 截取波形,使用示波器光标测量功能测量两个信号之间的时间差:

测量两个信号的时间差

从上面波形截图中可以看到,发射信号和反射回来的信号时间差为 16 纳秒,套入公式计算:

计算电缆长度

上面我们计算出的线缆长度为 1.51 米,我的这根线的实际长度为 1.5 米。

1. 换一个接头测量 0.75 平方电线的长度:

换一个接头测量 0.75 平方电线的长度

2. 波形如下:

测量0.75平方电线长度波形

从上面波形截图中可以看到,发射信号和反射回来的信号时间差为 61.2 纳秒,套入公式计算:

计算电线长度

上面我们计算出的线缆长度为 5.504 米,我的这根线的实际长度为 5.5 米。

如果不知道某种线缆的速度因子,可以用一条已知长度的线缆,通过以下公式求出:

求速度因子的公式

VF = 线缆速度因子,常量,无单位。

L = 线缆长度,单位:米。

Δt = 信号从发射到反射回来的时间差,单位:秒。

C = 光速,单位:米/秒。


本文转载自飞多学堂,已获授权!




点个在看你最好看

凡亿PCB 分享高速PCB设计、硬件设计、信号仿真、天线射频技术,提供技术交流、资料下载、综合提升电子应用开发能力!创立“凡亿教育”,致力做电子工程师的梦工厂,旨在赋能大学生、初中级电子工程师,倾力打造电子设计精品教育,逐步发展成系统
评论
  • 肖特基具有很多的应用场景, 可以做同步整流,防止电流倒灌和电源反接等,但是随着电源电流的增大,肖特基导通正向压降0.3~0.7v的劣势也越发明显,产生了很多的热,对于工程师的散热设计是个考验,增加了工程师的设计难度和产品成本,目前一种新的理想二极管及其控制器,目前正在得到越来越广泛的应用- BMS,无人机,PLC,安防,家电,电动工具,汽车等都在快速普及理想二极管有三种架构,内置电荷泵的类似无锡明芯微MX5050T这种,驱动能力会弱点,静态功耗200uA,外置电荷泵MX74700T的这种驱动能力
    王萌 2024-12-10 08:51 85浏览
  •         霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子
    锦正茂科技 2024-12-10 11:07 62浏览
  • 本文介绍Linux系统(Ubuntu/Debian通用)挂载exfat格式U盘的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。修改对应的内核配置文件# 进入sdk目录cdrk3562_linux# 编辑内核配置文件vi./kernel-5.10/arch/arm64/configs/rockchip_linux_defconfig注:不清楚内核使用哪个defc
    Industio_触觉智能 2024-12-10 09:44 89浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 78浏览
  • 智能汽车可替换LED前照灯控制运行的原理涉及多个方面,包括自适应前照灯系统(AFS)的工作原理、传感器的应用、步进电机的控制以及模糊控制策略等。当下时代的智能汽车灯光控制系统通过车载网关控制单元集中控制,表现特殊点的有特斯拉,仅通过前车身控制器,整个系统就包括了灯光旋转开关、车灯变光开关、左LED前照灯总成、右LED前照灯总成、转向柱电子控制单元、CAN数据总线接口、组合仪表控制单元、车载网关控制单元等器件。变光开关、转向开关和辅助操作系统一般连为一体,开关之间通过内部线束和转向柱装置连接为多,
    lauguo2013 2024-12-10 15:53 65浏览
  •         在有电流流过的导线周围会感生出磁场,再用霍尔器件检测由电流感生的磁场,即可测出产生这个磁场的电流的量值。由此就可以构成霍尔电流、电压传感器。因为霍尔器件的输出电压与加在它上面的磁感应强度以及流过其中的工作电流的乘积成比例,是一个具有乘法器功能的器件,并且可与各种逻辑电路直接接口,还可以直接驱动各种性质的负载。因为霍尔器件的应用原理简单,信号处理方便,器件本身又具有一系列的du特优点,所以在变频器中也发挥了非常重要的作用。  &nb
    锦正茂科技 2024-12-10 12:57 69浏览
  • 【萤火工场CEM5826-M11测评】OLED显示雷达数据本文结合之前关于串口打印雷达监测数据的研究,进一步扩展至 OLED 屏幕显示。该项目整体分为两部分: 一、框架显示; 二、数据采集与填充显示。为了减小 MCU 负担,采用 局部刷新 的方案。1. 显示框架所需库函数 Wire.h 、Adafruit_GFX.h 、Adafruit_SSD1306.h . 代码#include #include #include #include "logo_128x64.h"#include "logo_
    无垠的广袤 2024-12-10 14:03 68浏览
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 129浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 91浏览
  • 概述 通过前面的研究学习,已经可以在CycloneVGX器件中成功实现完整的TDC(或者说完整的TDL,即延时线),测试结果也比较满足,解决了超大BIN尺寸以及大量0尺寸BIN的问题,但是还是存在一些之前系列器件还未遇到的问题,这些问题将在本文中进行详细描述介绍。 在五代Cyclone器件内部系统时钟受限的情况下,意味着大量逻辑资源将被浪费在于实现较大长度的TDL上面。是否可以找到方法可以对此前TDL的长度进行优化呢?本文还将探讨这个问题。TDC前段BIN颗粒堵塞问题分析 将延时链在逻辑中实现后
    coyoo 2024-12-10 13:28 89浏览
我要评论
2
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦