苏联的三进制电脑,为什么被二进制干掉了?

电子电路 2021-11-05 22:40










当我们在电脑上打开一个软件,看一部电影,听一首歌的时候,我们很难想象,这些东西都是由 0 和 1 这样的二进制数字组成的。


但你有没有好奇过?为什么计算机要用二进制呢?难道是因为它效率最高吗?


但其实并非如此,理论上讲,三进制计算机的效率要比二进制更高,甚至苏联也曾花费重金研究过它。那我们为什么没有用上这种更高效的计算机呢?


 大家好我是差评君,今天跟大家聊聊三进制计算机的故事 ~ 



 二进制是最好的吗?


进制,是一种人类智慧衍生的计数方式。


我们天生有十根手指,所以人类天然选择了十进制。计票时常用的写 “ 正 ” 字,也类似于五进制。而计算机的二进制是由 0 和 1 组成的,也就是逢二进一,借一当二。


不知道大家有没有过疑问,为什么计算机没有用更常见的进制,而偏偏选择了二进制呢?毕竟计算机也是给人用的,非要转化成一串长长的 0 和 1 ,不是很反人类吗?


 之前差评君也看过不少科普,大多都是用一句 “ 电脑只能看得懂 0 和 1 ” 就蒙混过关了,但其实最主要的原因是,计算机出生的年代,二进制是最容易实现的。


其实历史上也曾出现过非二进制的电脑,比如 1945 年诞生的世界上第一台通用计算机 ENIAC,就是一台十进制电脑。


但,计算机是由逻辑电路组成的,而电路中通常只有两个状态 —— 开和关,这两种状态正好可以用 “ 1 ” 和 “ 0 ” 表示。


而 “ 1 ” 和 “ 0 ” 又恰好与逻辑运算中的 “ 对 ”( true  ) 与 “ 错 ”( false )对应,这才有了著名的冯.诺依曼结构,也让二进制在计算机上大放异彩。


此后的几十年,二进制计算机越来越先进,各方面的硬件也逐渐完善。现在你用的手机,电脑的显卡,女神的照片,爆肝的游戏,靠的全是二进制。


但其实!二进制并不是效率最高的,理论上讲,e 进制才是最高效的。


e 的大名叫自然常数,也叫欧拉数,是个大约为 2.71828 的无限不循环小数。温馨提示:以上内容为高中数学知识点,不懂的同学把它当成和 π 一样的东西就行。


那为啥说它的效率最高呢?先说说什么是效率,我们简单理解就是,在表达相同信息量的前提下,谁消耗的元件更少,谁的效率也就越高。


举个例子,假如我们要用十进制表达从 0 到 999 的一千个数字,那就要用 0-9 的十个牌子,并且需要三组,一共也就是 30 个牌子。

如果用二进制来表示这 1000 个数字,那我们需要 10 组的 0 和 1,也就是 20 个牌子
如果是三进制的话,需要 7 组的 0 、 1 、 2 ,也就是 21 个牌子,
四进制的话,需要 5 组的 0 、 1 、 2 、 3 ,即 20 个牌子。
......

我们以此类推可以算出每种进制需要用到的牌子数量。


 谁用的牌子越少,也就表示谁的效率越高。


然后会发现,在表示 0-999 的问题上,二进制和四进制的效率是最高的。


但是,在这个过程中,每种进制或多或少都出现了 “ 资源浪费 ”。


比如说 10 位的 2 进制,也就是 2 的 10 次方,一共能表达 1024 个数字,已经几乎用完了,但 7 位的 3 进制,一共能表达 2187 个数,也就是说在这个案例中,三进制比二进制能多表达 1163 个数。


我们在计算 “ 需要几位数 ” 的时候是这么考虑的:

log 以 2 为底 1000 的对数约等于 9.97,我们向上取整,所以是 10 位数, 10*2=20,所以二进制需要 20 个牌子。
log 以 3 为底 1000 的对数约等于 6.29,取整数是 7,7*3=21,所以三进制需要 21 个牌子。
......

由此我们发现,这种算法会浪费很多资源,所以为了更准确的计算,我们假设需要的位数可以不是整数,也就不用向上取整。


于是,为了表示 M 个数,在 x 进制下,需要 x*logx^M 个牌子。


所以效率就可以表示成这样一个公式:

 E=M/x*logx^M=M/lnM*lnx/x  

我们简单求导一下就知道,f`( x ) = MlnM ( 1-lnx )


当 X = e 的时候,原函数取极大值!


如果用图像表示原函数,大概就是这样,这个点就是 e。


也就是说当 x 等于 e 的时候,效率 E 是最大的。


所以得出结论,理论上,e 进制的效率最高。


以上推导过程来自于知乎大佬 “ 白云龙 ”,我们想了很多个例子,可惜都没有大佬这个 “ 倒计时 ” 的例子直观。


ok,咱们前面也提过,e 大概是 2.71828,也就是说 “ 2.71828 进制 ” 是理论上最高效的进制


 但是 2.71828 进制是个什么鬼?我数数手指还得掰个 0.71828 根?


那还得是个整数,不然工程上就没法实现了,而你看这个函数图就知道,相比 2,3 的效率是更接近 e。


由此我们能得出结论,数据表达上,效率最高的是三进制,其次才是二进制。


但为什么咱们现在没用上效率更高的三进制计算机呢?


这就不得不提到那个已经消失国家了。



 平衡三进制和 Setun 


苏联其实在五十多年前就发现了三进制在计算机上的优势。1958 年,莫斯科国立大学的计算机研究中心研制出了世界上第一台三进制电子计算机 —— Сетунь( setun )。


Сетунь 计算机用的不是一般那种逢三进一的三进制,而是平衡三进制,也叫对称三进制。


什么是平衡三进制呢,就是由 -1、0、1 构成的,对应的逻辑电路就是负电压、零电压和正电压。


 平衡三进制是一种很巧妙的设计,它所记录的数字可以表达出全部整数。而且由于 -1 的引入,对负数就不必使用额外的负号了,而二进制是无符号数,不能直接表示负数。


说回 Сетунь 这台计算机,虽然苏联早就看出了三进制的优秀,可一开始莫斯科大学并没有把这个项目当回事儿,只派了四个副博士和几个刚毕业的学生来开发。


 但没想到这台计算机在不同的室温下都表现出惊人的可靠性和稳定性。


虽然我觉得以当时苏联还在电子管上狂奔的情况来看,Сетунь 应该是比不上美国同时代的二进制计算机的,但是和同期其它苏联能生产的计算机比,Сетунь 还是优势很大的。


很快,苏联部长会议通过了批量生产Сетунь计算机的决议。不过工业部并不看好这台机器,他们觉得这个经济计划外的玩意儿就是个科幻产物。


与此同时,国内外的订单却像雪花般飞来,10 到 15 台的年产量远远不够应付市场需求。


奇怪的是工业部并没有随着订单数量的增加而增加产量,相反,他们严重限制了生产进度,拒绝订单,并在 1965 年完全停产。


是不是听起来不可思议,其实原因并不复杂,Сетунь 的电子元件良品率极高,而且非常耐造,同时价格还很低,它的售价只有 27.5 万卢布,创造了当时的最低记录,而同期的计算机售价基本都在它的两倍以上。


那台在莫大计算中心的样机整整运行了 17 年,除了在第一年更换了三个有缺陷的元器件之外,内部设备从来没维修过,直到它被摧毁前的一刻都还能正常使用。


而苏联官僚停产了 Сетунь 之后,取而代之的是一种相同性能的二进制计算机,但价格却贵出 2.5 倍。说白了,Сетунь 的生产让苏联官僚少了大笔的财政拨款。


 断人财路如杀人父母,所以这台三进制计算机就 “ 理所应当 ” 的成为了政治牺牲品。


虽然 Сетунь 最终只生产了五十台,但从加里宁格勒到雅库茨克,从阿什哈巴德到新西伯利亚,全苏都能看到它的身影。


而且各地都对 Сетунь 的评价很高,大家认为它编程简单,很适合用于工程计算、工业控制、计算机教学等等。


Сетунь 的成功经验让莫大决定不放弃这台计算机,于是他们顶住压力在 1970 年推出了 Сетунь 70 型计算机,而且还对应着二进制的 byte 创建了三进制字节 tryte。每个 tryte 由 6 个 trit 构成,约等于 9.5 个二进制的 bit。


但这个项目长期得不到上级的支持,最后也不得不无限期停滞。Сетунь 70 就此成了莫斯科大学的绝唱。


再后来苏联解体,三进制计算机也跟着苏维埃混入了历史的尘埃,直到今天也没有其他国家能够复现它。



 为什么现在没有三进制计算机 


虽说Сетунь证明了三进制计算机的可行性,但它没能发展起来,政治原因并不是主要原因。


甚至可以说,三进制计算机的失败,是一种历史必然


因为即使我们前面在数学上论证了三进制的效率,但也只停留在理论上,从理论到具体实现,经过的步骤太复杂了,因为比如说如果要做三进制计算机的话,就要用三种稳定状态的材料,起码二极管是用不了了。


而二进制只有 “ 0 ” 和 “ 1 ”,高低电压就很好区分,就算有些误差,计算机也可以识别出来,所以在稳定性上会远远高于三进制,在工程上也更容易实现


所以三进制对效率的提升也许并没有想象的那么美好。


既然它不够稳定,又不能高效提升,工程上还难以实现。为了这么一点可能的红利再从头发展这种技术就显得没必要了。


反观二进制的发展速度,早就快的没影了。


这就好比你玩了好久的养成游戏,已经花了无数个 648,就算没抽出版本之子,也很少有人从零开始玩小号吧。更别说是在越来越离不开计算机的今天,抛弃已经发展完善的二进制体系。


说点看得见的,要是没了二进制,我们现有的硬件体系都要洗牌,大家的电脑手机等电子产品会直接变砖,这事儿听起来也不现实吧。



 它是历史还是未来?


不过到了今天,随着芯片的制程越来越小,马上会碰到量子这个玄学领域,量子隧穿这样的难题,我们可能要花非常多的精力,才可能提升一点点效率,就像开了等级上限的⽹游,二进制已经快满级了,也许要开始开辟其他的路了。


三进制,现在就正在电子计算机以外的形态上复活。


比如,本身电子计算机因为只有开关两种基础状态,但是假如是光子计算机,就有光强、波长、相位、传播方向和偏振五种状态,上海大学的金翊教授团队就取了有无光态和偏振方向正交三个物理状态来尝试光子计算机。


再比如,在 2019 年,我国物理学家郭光灿和中国科技大学的同事就成功完成了三进制 qutrit 量子信号的传输,这也是科学家们在量子领域第一次成功的三进制研究。


近两年,韩国也成功开发出三进制半导体,让三进制计算机又往前迈了一步。


如今,二进制下庞大成熟的工业体系,已经渐渐显现出强弩之末的状态,但想用其他进制来取代它,仍然是不可能的事情。


但当我们看到三进制计算机在历史上的昙花一现的时候,有时候也会畅想,会不会在另一个平行时空,人类并没有选择电子计算机,而是发展出一套完全适配于三进制的系统。


而在那个时空中,会不会有一个视频的标题叫《 某国的二进制电脑,为什么被三进制干掉了? 》,也许那个时空的我们,会怀念二进制和电子计算机吧


撰文:杨子   视频制作:B站差评君   美编:焕妍


资料数据来源:

为什么计算机不用 e 进制,按道理说 e 进制难道不是最高效的吗?—— 知乎回答 “ 白云龙 ” 

为啥 E 进制计算机的效率最高 ? —— CSDN “ xosg ” 

Сетунь —— wikipedia 

平衡三进制 —— wikipedia 

三进制计算机 —— wikipedia 

三元计算机 “ Setun ” 和 “ Setun 70 ” —— computer-museum 

计算机程序设计艺术 —— 高德纳

ЭВМ " Сетунь " и " Сетунь 70" —— ternarycomp 


#推荐阅读#

  • 工程师的“手艺”PK,哪个更强大?

  • 步进/有刷/无刷小型电机的区别? 记住这张表!

  • 二极管还能这么玩?

  • 常见开关电源拓扑结构特点和优缺点对比!

  • iPhone 13 Pro拆解:L型电池让续航延长,刘海变小的原因找到了


点点在看,让我知道你喜欢今天的内容



电子电路 每日与你分享电子电路基础知识,涵盖电子技术、电子元器件知识、科普电路原理、电路板焊接、趣味电子制作,各种与电子专业相关必读干货!
评论
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 194浏览
  • 百佳泰特为您整理2025年1月各大Logo的最新规格信息,本月有更新信息的logo有HDMI、Wi-Fi、Bluetooth、DisplayHDR、ClearMR、Intel EVO。HDMI®▶ 2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新规范将支持更高的分辨率和刷新率,并提供更多高质量选项。更快的96Gbps 带宽可满足数据密集型沉浸式和虚拟应用对传输的要求,如 AR/VR/MR、空间现实和光场显示,以及各种商业应用,如大型数字标牌、医疗成像和
    百佳泰测试实验室 2025-01-16 15:41 188浏览
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 285浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 136浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 69浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 109浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 177浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 99浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 21浏览
  • 随着智慧科技的快速发展,智能显示器的生态圈应用变得越来越丰富多元,智能显示器不仅仅是传统的显示设备,透过结合人工智能(AI)和语音助理,它还可以成为家庭、办公室和商业环境中的核心互动接口。提供多元且个性化的服务,如智能家居控制、影音串流拨放、实时信息显示等,极大提升了使用体验。此外,智能家居系统的整合能力也不容小觑,透过智能装置之间的无缝连接,形成了强大的多元应用生态圈。企业也利用智能显示器进行会议展示和多方远程合作,大大提高效率和互动性。Smart Display Ecosystem示意图,作
    百佳泰测试实验室 2025-01-16 15:37 191浏览
  • 一个易用且轻量化的UI可以大大提高用户的使用效率和满意度——通过快速启动、直观操作和及时反馈,帮助用户快速上手并高效完成任务;轻量化设计则可以减少资源占用,提升启动和运行速度,增强产品竞争力。LVGL(Light and Versatile Graphics Library)是一个免费开源的图形库,专为嵌入式系统设计。它以轻量级、高效和易于使用而著称,支持多种屏幕分辨率和硬件配置,并提供了丰富的GUI组件,能够帮助开发者轻松构建出美观且功能强大的用户界面。近期,飞凌嵌入式为基于NXP i.MX9
    飞凌嵌入式 2025-01-16 13:15 211浏览
  • 实用性高值得收藏!! (时源芯微)时源专注于EMC整改与服务,配备完整器件 TVS全称Transient Voltage Suppre,亦称TVS管、瞬态抑制二极管等,有单向和双向之分。单向TVS 一般应用于直流供电电路,双向TVS 应用于电压交变的电路。在直流电路的应用中,TVS被并联接入电路中。在电路处于正常运行状态时,TVS会保持截止状态,从而不对电路的正常工作产生任何影响。然而,一旦电路中出现异常的过电压,并且这个电压达到TVS的击穿阈值时,TVS的状态就会
    时源芯微 2025-01-16 14:23 185浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 143浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦