伤害/等待互斥锁

Linux阅码场 2021-11-05 07:00
序言:近期读Linux 5.15的发布说明,该版本合并了实时锁机制,当开启配置宏CONFIG_PREEMPT_RT的时候,这些锁被基于实时互斥锁的变体替代:mutex、ww_mutexrw_semaphorespinlock和rwlock。第一次听说ww_mutex,在百度上查找的时候发现介绍文档很少,于是自己学习,写成笔记。
在某些场合必须同时持有多个锁,并且获取锁的顺序可能不同,为了避免死锁,应该使用伤害/等待互斥锁(Wound/Wait Mutexes)。获取一个锁集合称为一个事务(transaction),每个事务关联一张门票(ticket),门票也称为序列号,根据门票判断哪个事务年轻。有2种处理死锁的方法,如下。
(1) 等待-死亡(Wait-Die)算法:一个事务申请另一个事务已经获取的锁的时候,如果持有锁的事务年轻,那么申请锁的事务等待(wait);如果持有锁的事务年老,那么申请锁的事务退并且死亡(die)

(2) 4.19版本开始支持伤害-等待(Wound-Wait)算法:一个事务申请另一个事务已经获取的锁的时候,如果持有锁的事务年轻,那么申请锁的事务伤害(wound)持有锁的事务,请求它去死亡;如果持有锁的事务年老,那么申请锁的事务等待(wait)

假设进程1和进程2分别在2个处理器上运行,进程1获取锁A,进程2获取锁B,然后进程1申请锁B,进程2申请锁A。假设进程1的门票编号比进程2的门票编号小,也就是进程1年老,进程2年轻。
假设选择等待-死亡算法。年老的进程1申请锁B,发现持有锁B的进程2年轻,那么年老的进程1等待。年轻的进程2申请锁A,发现持有锁A的进程1年老,那么年轻的进程2死亡(即申请锁的函数返回“-EDEADLK”),接着回滚(即释放已经获取的锁B),然后重新开始:先申请锁A然后申请锁B(必须改变申请顺序,如果先申请锁B,那么会把刚释放的锁B抢回来)。
假设选择伤害-等待算法。年老的进程1申请锁B,发现持有锁B的进程2年轻,那么伤害年轻的进程2,请求它死亡。年轻的进程2申请锁A,发现持有锁A的进程1年老,那么年轻的进程2等待,在收到进程1的死亡请求以后,年轻的进程2死亡(即申请锁的函数返回“-EDEADLK”),接着回滚(即释放已经获取的锁B),然后重新开始:先申请锁A然后申请锁B。
两种算法都是公平的,因为其中一个事务最终会成功。和等待-死亡算法相比,伤害-等待算法生成的退避少,但是从一次退避恢复的时候要做更多的工作。伤害-等待算法是一种抢占性的算法(因为事务被其它事务伤害),需要一种可靠的方法来选择受伤状态和抢占正在运行的事务。在伤害-等待算法中,一个事务在受伤后死亡(返回“-EDEADLK”),就认为这个事务被抢占。
如果竞争锁的进程少,并且希望减少回滚的次数,那么应该选择伤害-等待算法。
 
和普通的互斥锁相比,伤害/等待互斥锁增加了下面2个概念。

(1) 获取上下文(acquire context):一个获取上下文表示一个事务,关联一张门票(ticket),门票也称为序列号,门票编号小表示年老,门票编号大表示年轻。获取上下文跟踪调试状态,捕获对伤害/等待互斥锁接口的错误使用。

(2) 伤害/等待类初始化获取上下文的时候需要指定锁类,锁类会给获取上下文分配门票。锁类也指定算法:等待-死亡(Wait-Die)或伤害-等待(Wound-Wait)。当多个进程竞争同一个锁集合的时候,它们必须使用相同的锁类。

 
3种获取伤害/等待互斥锁的函数,如下。

(1) 普通的获取锁函数ww_mutex_lock(),带有获取上下文。

(2) 进程在回滚(即释放所有已经获取的锁)以后,使用慢路径获取锁函数ww_mutex_lock_slow()获取正在竞争的锁。带有“_slow”后缀的函数不是必需的,因为可以调用函数ww_mutex_lock()获取正在竞争的锁。带有“_slow”后缀的函数的优点是接口安全,如下。

  • 函数ww_mutex_lock()有一个整数返回值,而函数ww_mutex_lock_slow()没有返回值。
  • 当开启调试的时候,函数ww_mutex_lock_slow()检查所有已经获取的锁已经被释放,并且确保进程阻塞在正在竞争的锁上面。

(3) 只获取一个伤害/等待互斥锁,和获取普通的互斥锁完全相同。调用函数ww_mutex_lock(),把获取上下文指定为空指针。

 
伤害/等待互斥锁的使用方法如下。

(1) 定义一个锁类,锁类在初始化获取上下文的时候需要,锁类也指定算法:等待-死亡(Wait-Die)或伤害-等待(Wound-Wait)。

/* 指定等待-死亡算法 */static DEFINE_WD_CLASS(my_class);
/* 指定伤害-等待算法 */static DEFINE_WW_CLASS(my_class);

(2) 初始化一个获取上下文,锁类会给获取上下文分配一张门票。

void ww_acquire_init(struct ww_acquire_ctx *ctx, struct ww_class *ww_class);
(3) 获取锁,返回0表示获取成功,返回“-EDEADLK”表示检测出死锁。
int ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx);
(4) 获取需要的所有锁以后,标记获取阶段结束。目前这个函数没有执行任何操作,但是将来可能改变。
void ww_acquire_done(struct ww_acquire_ctx *ctx);
(5) 释放锁。
void ww_mutex_unlock(struct ww_mutex *lock);
(6) 释放所有锁以后,释放获取上下文。
void ww_acquire_fini(struct ww_acquire_ctx *ctx);

 

下面是一个例子,注意:调用函数ww_mutex_lock()申请锁失败以后,应该先释放已经获取的锁,然后调用慢路径函数ww_mutex_lock_slow()获取正在竞争的锁,最后获取其它锁。重新开始申请锁的时候必须改变申请顺序,因为如果按照原来的顺序申请锁,那么会把刚释放的锁抢回来。
/* 第1步:定义锁类,指定伤害-等待算法。*/static DEFINE_WW_CLASS(ww_class);
struct obj { struct ww_mutex lock; /* obj data */};
struct obj_entry { struct list_head head; struct obj *obj;};
int lock_objs(struct list_head *list, struct ww_acquire_ctx *ctx){ struct obj *res_obj = NULL; struct obj_entry *contended_entry = NULL; struct obj_entry *entry; int ret;
/* 第2步:初始化获取上下文。*/ ww_acquire_init(ctx, &ww_class);
/* 第3步:获取锁。*/retry: list_for_each_entry(entry, list, head) { if (entry->obj == res_obj) { res_obj = NULL; continue; }
ret = ww_mutex_lock(&entry->obj->lock, ctx); if (ret < 0) { contended_entry = entry; goto err; } }
/* 第4步:标记获取阶段结束。*/ ww_acquire_done(ctx); return 0;
err: /* 回滚,释放已经获取的锁。*/ list_for_each_entry_continue_reverse(entry, list, head) { ww_mutex_unlock(&entry->obj->lock); }
if (res_obj) { ww_mutex_unlock(&res_obj->lock); }
if (ret == -EDEADLK) { /* 使用慢路径获取锁函数获取正在竞争的锁。*/ ww_mutex_lock_slow(&contended_entry->obj->lock, ctx); res_obj = contended_entry->obj; /* 获取其它锁。*/ goto retry; } ww_acquire_fini(ctx);
return ret;}
void unlock_objs(struct list_head *list, struct ww_acquire_ctx *ctx){ struct obj_entry *entry;
/* 第5步:释放锁。*/ list_for_each_entry (entry, list, head) { ww_mutex_unlock(&entry->obj->lock); }
/* 第6步:释放获取上下文。*/ ww_acquire_fini(ctx);}
 
参考文档如下。

(1) Wait/wound mutexeshttps://lwn.net/Articles/548909/

(2) 内核文档“Documentation/locking/ww-mutex-design.rst

Linux阅码场 专业的Linux技术社区和Linux操作系统学习平台,内容涉及Linux内核,Linux内存管理,Linux进程管理,Linux文件系统和IO,Linux性能调优,Linux设备驱动以及Linux虚拟化和云计算等各方各面.
评论 (0)
  • 文/Leon编辑/cc孙聪颖作为全球AI领域的黑马,DeepSeek成功搅乱了中国AI大模型市场的格局。科技大厂们选择合作,接入其模型疯抢用户;而AI独角兽们则陷入两难境地,上演了“Do Or Die”的抉择。其中,有着“大模型六小虎”之称的六家AI独角兽公司(智谱AI、百川智能、月之暗面、MiniMax、阶跃星辰及零一万物),纷纷开始转型:2025年伊始,李开复的零一万物宣布转型,不再追逐超大模型,而是聚焦AI商业化应用;紧接着,消息称百川智能放弃B端金融市场,聚焦AI医疗;月之暗面开始削减K
    华尔街科技眼 2025-03-12 17:37 172浏览
  • 曾经听过一个“隐形经理”的故事:有家公司,新人进来后,会惊讶地发现老板几乎从不在办公室。可大家依旧各司其职,还能在关键时刻自发协作,把项目完成得滴水不漏。新员工起初以为老板是“放羊式”管理,结果去茶水间和老员工聊过才发现,这位看似“隐形”的管理者其实“无处不在”,他提前铺好了企业文化、制度和激励机制,让一切运行自如。我的观点很简单:管理者的最高境界就是——“无为而治”。也就是说,你的存在感不需要每天都凸显,但你的思路、愿景、机制早已渗透到组织血液里。为什么呢?因为真正高明的管理,不在于事必躬亲,
    优思学院 2025-03-12 18:24 84浏览
  • 在海洋监测领域,基于无人艇能够实现高效、实时、自动化的海洋数据采集,从而为海洋环境保护、资源开发等提供有力支持。其中,无人艇的控制算法训练往往需要大量高质量的数据支持。然而,海洋数据采集也面临数据噪声和误差、数据融合与协同和复杂海洋环境适应等诸多挑战,制约着无人艇技术的发展。针对这些挑战,我们探索并推出一套基于多传感器融合的海洋数据采集系统,能够高效地采集和处理海洋环境中的多维度数据,为无人艇的自主航行和控制算法训练提供高质量的数据支持。一、方案架构无人艇要在复杂海上环境中实现自主导航,尤其是完
    康谋 2025-03-13 09:53 59浏览
  • 一、行业背景与用户需求随着健康消费升级,智能眼部按摩仪逐渐成为缓解眼疲劳、改善睡眠的热门产品。用户对这类设备的需求不再局限于基础按摩功能,而是追求更智能化、人性化的体验,例如:语音交互:实时反馈按摩模式、操作提示、安全提醒。环境感知:通过传感器检测佩戴状态、温度、压力等,提升安全性与舒适度。低功耗长续航:适应便携场景,延长设备使用时间。高性价比方案:在控制成本的同时实现功能多样化。针对这些需求,WTV380-8S语音芯片凭借其高性能、多传感器扩展能力及超高性价比,成为眼部按摩仪智能化升级的理想选
    广州唯创电子 2025-03-13 09:26 39浏览
  • 本文介绍OpenHarmony4.1系统开发板,出现打不开WiFi和蓝牙的问题排查和解决方法。触觉智能Purple Pi OH鸿蒙开发板演示,搭载了瑞芯微RK3566四核处理器,1TOPS算力NPU;Laval鸿蒙社区推荐并通过了开源鸿蒙XTS认证,成功适配OpenHarmony3.2、4.0、4.1、5.0 Release系统,SDK源码全开放!WiFi打不开缺少WiFi固件在WiFi打不开时我们可以通过使用串口工具查看WiFi打印信息:这条log主要说明了打开固件文件失败,说明了在/vend
    Industio_触觉智能 2025-03-12 14:32 60浏览
  • 北京时间3月11日,国内领先的二手消费电子产品交易和服务平台万物新生(爱回收)集团(纽交所股票代码:RERE)发布2024财年第四季度和全年业绩报告。财报显示,2024年第四季度万物新生集团总收入48.5亿元,超出业绩指引,同比增长25.2%。单季non-GAAP经营利润1.3亿元(non-GAAP口径,即经调整口径,均不含员工股权激励费用、无形资产摊销及因收购产生的递延成本,下同),并汇报创历史新高的GAAP净利润7742万元,同比增长近27倍。总览全年,万物新生总收入同比增长25.9%达到1
    华尔街科技眼 2025-03-13 12:23 68浏览
  • DeepSeek自成立之初就散发着大胆创新的气息。明明核心开发团队只有一百多人,却能以惊人的效率实现许多大厂望尘莫及的技术成果,原因不仅在于资金或硬件,而是在于扁平架构携手塑造的蜂窝创新生态。创办人梁文锋多次强调,与其与大厂竞争一时的人才风潮,不如全力培养自家的优质员工,形成不可替代的内部生态。正因这样,他对DeepSeek内部人才体系有着一套别具一格的见解。他十分重视中式教育价值,因而DeepSeek团队几乎清一色都是中国式学霸。许多人来自北大清华,或者在各种数据比赛中多次获奖,可谓百里挑一。
    优思学院 2025-03-13 12:15 67浏览
  • 文/杜杰编辑/cc孙聪颖‍主打影像功能的小米15 Ultra手机,成为2025开年的第一款旗舰机型。从发布节奏上来看,小米历代Ultra机型,几乎都选择在开年发布,远远早于其他厂商秋季主力机型的发布时间。这毫无疑问会掀起“Ultra旗舰大战”,今年影像手机将再次被卷上新高度。无意臆断小米是否有意“领跑”一场“军备竞赛”,但各种复杂的情绪难以掩盖。岁岁年年机不同,但将2-3年内记忆中那些关于旗舰机的发布会拼凑起来,会发现,包括小米在内,旗舰机的革新点,除了摄影参数的不同,似乎没什么明显变化。贵为旗
    华尔街科技眼 2025-03-13 12:30 81浏览
  • 2025年,科技浪潮汹涌澎湃的当下,智能数字化变革正进行得如火如荼,从去年二季度开始,触觉智能RK3562核心板上市以来,受到了火爆的关注,上百家客户选用了此方案,也获得了众多的好评与认可,为客户的降本增效提供了广阔的空间。随着原厂的更新,功能也迎来了一波重大的更新,无论是商业级(RK3562)还是工业级(RK3562J),都可支持NPU和2×CAN,不再二选一。我们触觉智能做了一个艰难又大胆的决定,为大家带来两大重磅福利,请继续往下看~福利一:RK3562核心板149元特惠再续,支持2×CAN
    Industio_触觉智能 2025-03-12 14:45 31浏览
  •        随着人工智能算力集群的爆发式增长,以及5.5G/6G通信技术的演进,网络数据传输速率的需求正以每年30%的速度递增。万兆以太网(10G Base-T)作为支撑下一代数据中心、高端交换机的核心组件,其性能直接决定了网络设备的稳定性与效率。然而,万兆网络变压器的技术门槛极高:回波损耗需低于-20dB(比千兆产品严格30%),耐压值需突破1500V(传统产品仅为1000V),且需在高频信号下抑制电磁干扰。全球仅有6家企业具备规模化量产能力,而美信科
    中科领创 2025-03-13 11:24 49浏览
  • 引言汽车行业正经历一场巨变。随着电动汽车、高级驾驶辅助系统(ADAS)和自动驾驶技术的普及,电子元件面临的要求从未如此严格。在这些复杂系统的核心,存在着一个看似简单却至关重要的元件——精密电阻。贞光科技代理品牌光颉科技的电阻选型过程,特别是在精度要求高达 0.01% 的薄膜和厚膜技术之间的选择,已成为全球汽车工程师的关键决策点。当几毫欧姆的差异可能影响传感器的灵敏度或控制系统的精确性时,选择正确的电阻不仅仅是满足规格的问题——它关系到车辆在极端条件下的安全性、可靠性和性能。在这份全面指南中,我们
    贞光科技 2025-03-12 17:25 115浏览
  • 在追求更快、更稳的无线通信路上,传统射频架构深陷带宽-功耗-成本的“不可能三角”:带宽每翻倍,系统复杂度与功耗增幅远超线性增长。传统方案通过“分立式功放+多级变频链路+JESD204B 接口”的组合试图平衡性能与成本,却难以满足实时性严苛的超大规模 MIMO 通信等场景需求。在此背景下,AXW49 射频开发板以“直采+异构”重构射频范式:基于 AMD Zynq UltraScale+™ RFSoC Gen3XCZU49DR 芯片的 16 通道 14 位 2.5GSPS ADC 与 16
    ALINX 2025-03-13 09:27 43浏览
  • 本文介绍Android系统主板应用配置默认获取管理所有文件权限方法,基于触觉智能SBC3588行业主板演示,搭载了瑞芯微RK3588芯片,八核处理器,6T高算力NPU;音视频接口、通信接口等各类接口一应俱全,支持安卓Android、Linux、开源鸿蒙OpenHarmony、银河麒麟Kylin等操作系统。配置前提在配置前,建议先将应用配置成系统应用,不然配置后系统每次重启后都会弹窗提示是否获取权限。应用配置成系统应用,可参考以下链接方法:瑞芯微开发板/主板Android系统APK签名文件使用方法
    Industio_触觉智能 2025-03-12 14:34 56浏览
  • 前言在快速迭代的科技浪潮中,汽车电子技术的飞速发展不仅重塑了行业的面貌,也对测试工具提出了更高的挑战与要求。作为汽车电子测试领域的先锋,TPT软件始终致力于为用户提供高效、精准、可靠的测试解决方案。新思科技出品的TPT软件迎来了又一次重大更新,最新版本TPT 2024.12将进一步满足汽车行业日益增长的测试需求,推动汽车电子技术的持续革新。基于当前汽车客户的实际需求与痛点,结合最新的技术趋势,对TPT软件进行了全面的优化与升级。从模型故障注入测试到服务器函数替代C代码函数,从更准确的需求链接到P
    北汇信息 2025-03-13 14:43 63浏览
  • 一、行业背景与需求痛点智能电子指纹锁作为智能家居的核心入口,近年来市场规模持续增长,用户对产品的功能性、安全性和设计紧凑性提出更高要求:极致空间利用率:锁体内部PCB空间有限,需高度集成化设计。语音交互需求:操作引导(如指纹识别状态、低电量提醒)、安全告警(防撬、试错报警)等语音反馈。智能化扩展能力:集成传感器以增强安全性(如温度监测、防撬检测)和用户体验。成本与可靠性平衡:在复杂环境下确保低功耗、高稳定性,同时控制硬件成本。WTV380-P(QFN32)语音芯片凭借4mm×4mm超小封装、多传
    广州唯创电子 2025-03-13 09:24 56浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦