一文搞懂0.1UF和10UF电容并联使用技巧

小麦大叔 2021-11-04 18:00

摘要搞电子的不知道小伙伴有没有被问到过,芯片附近放置的电容是多少?当你回答说是0.1uF,当你心里暗自庆幸还好自己知道的时候,面试官突然又问道为什么选取0.1uF?想必此时不少小伙伴都会想到,我看别人都是这么画的,官方推荐也是这么干的,如果你是这么回答,那面试官是不会满意的。

怎么回答才算是牛X呢?电路设计的每一个器件可以说是都不是没有根据的随便选型,只是可能到你手里之后,已经经过多方验证,是成型的原理图,参数不需要修改,所以关注的也少。回归正题,接下来分析分析,上面提到的,为什么是0.1uF电容,而不是1uF、10uF......

一、电容模型本质

先来看看电容,电容的作用简单的说就是存储电荷。我们都知道在电源中要加电容滤波,在每个芯片的电源脚放置一个0.1uF的电容去耦。等等,怎么我看到有些板子芯片的电源脚旁边的电容是0.1uF的或者0.01uF的,有什么讲究吗。要搞懂这个道道就要了解电容的实际特性。理想的电容它只是一个电荷的存储器,即C。而实际制造出来的电容却不是那么简单,分析电源完整性的时候我们常用的电容模型如下图所示。

果果小师弟original

图中ESR是电容的串联等效电阻ESL是电容的串联等效电感,C才是真正的理想电容。ESR和ESL是由电容的制造工艺和材料决定的,没法消除。那这两个东西对电路有什么影响。ESR影响电源的纹波,ESL影响电容的滤波频率特性。

电容的容抗

电感的感抗

实际电容的复阻抗为

可见当频率很低的时候是电容起作用, 而频率高到一定的时候电感的作用就不可忽视了,再高的时候电感就起主导作用了。电容就失去滤波的作用了。所以记住,高频的时候电容就不是单纯的电容了。

电容阻抗-频率曲线图

二、旁路和去耦

旁路电容(Bypass Capacitor)和去耦电容(Decoupling Capacitor)这两个概念在电路中是常见的,但是真正理解起来并不容易。要理解这两个词汇,还得回到英文语境中去。

1、Bypass

Bypass在英语中有抄小路、旁路的意思,在电路中也是这个意思,如下图所示。

果果小师弟original

couple在英语中是一对的意思,引申为配对、耦合的意思。如果系统A中的信号引起了系统B中的信号,那么就说A与B系统出现了耦合现象(Coupling),而Decoupling就是减弱这种耦合的意思。

2、Decoupling

Couple 一对,一双。动词引申为配对,连接的意思。如果系统A中出现的事物(信号)引起了系统B中一事物(信号)的出现,或者反过来,那么我们就说系统A与系统B出现了耦合(Coupling)。Decoupling退耦即减弱这种耦合。

果果小师弟original

三、电路中的旁路和去耦

如下图中,直流电源Power给芯片IC供电,在电路中并入了两个电容。

果果小师弟original

1、旁路

如果Power受到了干扰,一般是频率比较高的干扰信号,可能使IC不能正常工作。

在靠近Power处并联一个电容C1,因为电容对直流开路,对交流呈低阻态。

频率较高的干扰信号通过C1回流到地,本来会经过IC的干扰信号通过电容抄近路流到了GND。这里的C1就是旁路电容的作用。

2、去耦

由于集成电路的工作频率一般比较高,IC启动瞬间或者切换工作频率时,会在供电导线上产生较大的电流波动,这种干扰信号直接反馈到Power会使其产生波动。

在靠近IC的VCC供电端口并联一个电容C2,因为电容有储能作用,可以给IC提供瞬时电流,减弱IC电流波动干扰对Power的影响。这里的C2起到了去耦电容的作用。

四、为什么要用2个电容

回到本文最开始提到的问题,为什么要用0.1uF和0.01uF的两个电容?

电容阻抗和容抗计算公式分别如下:

容抗与频率和电容值成反比,电容越大、频率越高则容抗越小,对交流电的阻碍作用就越小。可以简单理解为电容越大,滤波效果越好。那么有了0.1uF的电容旁路,再加一个0.01uF的电容不是浪费吗?

实际上,对一个特定电容,当信号频率低于其自谐振频率时呈容性,当信号频率高于其自谐振频率时呈感性。当用0.1uF和0.01uF的两个电容并联时,相当于拓宽了滤波频率范围

两种方式组合滤波

实际电路中我们需要去耦的频率范围会比较宽,因此一个电容搞不定,那怎么办呢?我们经常有两种方法来解决,一种是使用一个大电容和一个小电容并联还有一种是使用多个相同的电容并联

以下是正点原子开发板上面的一些模块芯片的电路,可供参考。

CH340
STM32
MP2359
MPU6050

五、电容选型建议

频率范围/HZ电容取值(智果芯)
DC-100K10uF以上的钽电容或铝电解
100K-10M100nF(0.1uF)陶瓷电容
10M-100M10nF(0.01uF)陶瓷电容解
100M以上1nF(0.001uF) 陶瓷电容和PCB的地平面与电源平面的电容解

所以,以后不要见到什么都放0.1uF的电容,有些高速系统中这些0.1uF的电容根本就起不了作用。


—— The End ——

细节决定成败,聊聊防御性编程


基础很重要!elf和map文件有不同?


19岁天才少年纯手工自制CPU,直呼NB


小麦大叔 一位热衷技术的攻城狮,懂点技术,会讲故事,交个朋友?
评论
  • ​本文介绍PC电脑端运行VMware环境下,同时烧录固件检测不到设备的解决方法。触觉智能Purple Pi OH鸿蒙开发板演示,搭载了瑞芯微RK3566芯片,类树莓派设计,Laval官方社区主荐,已适配全新OpenHarmony5.0 Release系统!PC端烧录固件时提示没有发现设备按照各型号烧录手册中进入loader模式的操作方法,让开发板连接到PC端。正常来说开发板烧录时会显示“发现一个LOADER设备”,异常情况下,会提示“没有发现设备”,如下图所示: 解决步骤当在烧录系统固
    Industio_触觉智能 2024-12-18 18:07 72浏览
  • 以人形机器人和通用人工智能为代表的新技术、新产品、新业态蓬勃发展,正成为全球科技创新的制高点与未来产业的新赛道。01、Optimus-Gen 2来了,人形机器人管家还远吗?没有一点点防备,特斯拉人形机器人Optimus-Gen 2来了!12月13日,马斯克于社交媒体上公布了特斯拉第二代人形机器人的产品演示,并预计将于本月内发布。在视频中,Optimus-Gen 2相比上一代有了大幅改进,不仅拥有AI大模型的加持,并在没有其他性能影响的前提下(相比上一代)将体重减少10kg,更包含:由特斯拉设计的
    艾迈斯欧司朗 2024-12-18 12:50 126浏览
  • 上汽大通G90是一款集豪华、科技与舒适于一身的中大型MPV,号称“国产埃尔法”。在国内市场,作为“卷王”的G90主要面向中大型MPV市场,满足家庭出行、商务接待和客运租赁等多元化场景需求,在国内市场上取得了不错的销售成绩。在海外市场,上汽大通G90也展现出了强大的竞争力,通过技术创新和品质提升,上汽大通的产品在国际市场上获得了广泛认可,出口量持续增长,如果你去过泰国,你就应该可以了解到,上汽的品牌出海战略,他们在泰国有建立工厂,上汽大通G90作为品牌的旗舰车型之一,自然也在海外市场上占据了重要地
    lauguo2013 2024-12-18 10:11 111浏览
  •  2024年下半年,接二连三的“Duang Duang”声,从自动驾驶行业中传来:文远知行、黑芝麻、地平线、小马智行等相继登陆二级市场,希迪智驾、Momenta、佑驾等若干家企业在排队冲刺IPO中。算法模型的历史性迭代与政策的不断加码,让自动驾驶的前景越来越清晰。由来只有新人笑,有谁听到旧人哭。在资本密集兑现的自动驾驶小元年里,很多人可能都已经遗忘,“全球自动驾驶第一股”的名号,曾经属于一家叫做图森未来的公司。曾经风光无两的“图森”,历经内讧与退市等不堪往事之后,而今的“未来”似乎被锚
    锦缎研究院 2024-12-18 11:13 94浏览
  • 车载光纤通信随着ADAS(高阶驾驶辅助系统)、汽车智能网联、V2X和信息娱乐技术的不断发展,车载电子系统和应用数量迅速增加。不断增长的车内传输数据量对车载通信网络造成了巨大的数据带宽和安全性需求,传统的车载总线技术已经不能满足当今高速传输的要求。铜缆的广泛使用导致了严重的电磁干扰(EMI),同时也存在CAN、LIN、FlexRay等传统总线技术不太容易解决的问题。在此背景下,车载光纤通信技术逐渐受到关注和重视,除了大大提高数据传输率外,还具有抗电磁干扰、减少电缆空间和车辆质量等优点,在未来具有很
    广电计量 2024-12-18 13:31 121浏览
  • 在强调可移植性(portable)的年代,人称「二合一笔电」的平板笔电便成为许多消费者趋之若鹜的3C产品。说到平板笔电,不论是其双向连接设计,面板与键盘底座可分离的独特功能,再加上兼具笔电模式、平板模式、翻转模式及帐篷模式等多种使用方式,让使用者在不同的使用情境下都能随意调整,轻巧灵活的便利性也为多数消费者提供了绝佳的使用体验。然而也正是这样的独特设计,潜藏着传统笔电供货商在产品设计上容易忽视的潜在风险。平板笔电Surface Pro 7+ 的各种使用模式。图片出处:Microsoft Comm
    百佳泰测试实验室 2024-12-19 17:40 105浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-18 14:02 110浏览
  • 户外照明的“璀璨王者”,艾迈斯欧司朗OSCONIQ® C3030降临啦全球领先的光学解决方案供应商艾迈斯欧司朗(瑞士证券交易所股票代码:AMS)近日宣布,推出新一代高性能LED——OSCONIQ® C 3030。这款尖端LED系列专为严苛的户外及体育场照明环境而设计,兼具出色的发光强度与卓越的散热效能。其支持高达3A的驱动电流及最大9W的功率输出,以紧凑扁平封装呈现卓越亮度和可靠性,确保高强度照明持久耐用且性能出众。应用领域01体育场及高杆照明OSCONIQ® C 3030以卓越的光通量密度、出
    艾迈斯欧司朗 2024-12-18 14:25 108浏览
  • By Toradex秦海1). 简介为了保证基于 IEEE 802.3 协议设计的以太网设备接口可以互相兼容互联互通,需要进行 Ethernet Compliance 一致性测试,相关的技术原理说明请参考如下文章,本文就不赘述,主要展示基于 NXP i.MX8M Mini ARM 处理器平台进行 1000M/100M/10M 以太网端口进行一致性测试的测试流程。https://www.toradex.com
    hai.qin_651820742 2024-12-19 15:20 61浏览
  •         不卖关子先说感受,真本书真是相见恨晚啊。字面意思,见到太晚了,我刚毕业或者刚做电子行业就应该接触到这本书的。我自己跌跌撞撞那么多年走了多少弯路,掉过多少坑,都是血泪史啊,要是提前能看到这本书很多弯路很多坑都是可以避免的,可惜这本书是今年出的,羡慕现在的年轻人能有这么丰富完善的资料可以学习,想当年我纯靠百度和论坛搜索、求助啊,连个正经师傅都没有,从软件安装到一步一布操作纯靠自己瞎摸索,然后就是搜索各种教程视频,说出来都是泪啊。  &
    DrouSherry 2024-12-19 20:00 6浏览
  • You are correct that the length of the via affects its inductance. Not only the length of the via, but also the shape and proximity of the return-current path determines the inductance.   For example, let's work with a four-layer board h
    tao180539_524066311 2024-12-18 15:56 112浏览
  • 沉寂已久的无人出租车赛道,在2024年突然升温了。前脚百度旗下萝卜快跑,宣布无人驾驶单量突破800万单;后脚特斯拉就于北京时间10月11日上午,召开了以“We,Robot”为主题的发布会,公布了无人驾驶车型Cybercab和Robovan,就连低调了好几个月的滴滴也在悄悄扩编,大手笔加码Robotaxi。不止是滴滴、百度、特斯拉,作为Robotaxi的重磅选手,文远知行与小马智行,也分别在10月份先后启动美股IPO,极氪也在近日宣布,其与Waymo合作开发的无人驾驶出行汽车将大规模量产交付,无人
    刘旷 2024-12-19 11:39 115浏览
  • 由于该文反应热烈,受到了众多工程师的关注,衷心感谢广大优秀工程师同仁的建言献策。特针对该技术点更新一版相关内容! 再次感谢大家的宝贵建议!填充铜(Solid Copper)和网格铜(Hatched Copper)是PCB设计中两种不同的铺铜方式,它们在电气性能、热管理、加工工艺和成本方面存在一些区别:1. 电气性能:填充铜:提供连续的导电层,具有极低的电阻和最小的电压降。适合大电流应用,并能提供优秀的电磁屏蔽效果,显著提高电磁兼容性。网格铜:由于铜线之间存在间隔,电阻相对较高,电压降也
    为昕科技 2024-12-18 17:11 94浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦