一文汇集常用电路基础公式&换算

电源Fan 2021-11-02 09:09





1. 欧姆定律计算



计算电阻电路中电流、电压、电阻和功率之间的关系。

欧姆定律解释
欧姆定律解释了电压、电流和电阻之间的关系,即通过导体两点间的电流与这两点间的电势差成正比。

说明两点间的电压差、流经该两点的电流和该电流路径电阻之间关系的定律。该定律的数学表达式为 V = IR,其中 V 是电压差,I 是以安培为单位的电流,R 是以欧姆为单位的电阻。若电压已知,则电阻越大,电流越小。





2. 计算多个串联或并联连接的电阻的总阻值







3. 计算多个串联或并联连接的电容器的总容值







4. 电阻分压计算



计算电阻分压器电路的输出电压,以实现既定的阻值和电源电压组合。

什么是分压器?
分压器是一个无源线性电路,能产生一个是其输入电压 (V1) 一部分的输出电压 (Vout)。分压器用于调整信号电平,实现有源器件和放大器偏置,以及用于测量电压。
欧姆定律解释了电压、电流和电阻之间的关系,即通过两点间导体的电流与这两点间的电势差成正比。

这是一个说明两点间的电压差、流经该两点的电流和该电流路径电阻之间关系的定律。该定律的数学表达式为 V = IR,其中 V 是电压差,I 是以安培为单位的电流,R 是以欧姆为单位的电阻。若电压已知,则电阻越大,电流越小。





5. 电流分流器,电阻计算



计算连接到电流源的多至 10 个并联电阻上流过的电流:




6. 电抗计算



计算指定频率下电感器或电容器的电抗或导纳大小。
感抗/导纳

容抗/导纳



7. RC 时间常数计算器



计算电阻与电容的积,亦称 RC 时间常数。该数值在描述电容通过电阻器进行充电或放电的方程式中出现,表示在改变施加到电路的电压后,电容器两端的电压达到其最终值约 63% 所需的时间。同时该计算器也会计算电容器充电到指定电压所存储的总能量。
如何计算时间常数:

时间常数 (T) 可由电容 (C) 和负载电阻 (R) 的值确定。电容器 (E) 中存储的能量 (E) 由两个输入确定,即由电压 (V) 和电容决定。






8. LED 串联电阻器计算器



计算在指定电流水平下通过电压源驱动一个或多个串联 LED 所需的电阻。注意:当为此目的选择电阻器时,为避免电阻器温度过高,请选择额定功率是下方计算出的功率值的 2 至 10 倍之间的电阻器。





9. dBm 转 W 换算







10. 电感换算







11. 电容器换算表



换算包括 pF、nF、μF、F 在内的不同量级电容单位之间的电容测量值。




12. 电池续航时间



电池续航时间计算公式

电池续航时间 = 电池容量 (mAh) / 负载电流 (mA)

根据电池的标称容量和负载所消耗的平均电流来估算电池续航时间。电池容量通常以安培小时 (Ah) 或毫安小时 (mAh) 为计量单位,尽管偶尔会使用瓦特小时 (Wh)。

将瓦特小时除以电池的标称电压 (V),就可以转换为安培小时,公式如下:Ah = Wh / V

安培小时(亦称安时),是一种电荷度量单位,等于一段时间内的电流。一安时等于一个小时的一安培连接电流。毫安小时或毫安时是一千分之一安培小时,因此 1000 mAh 电池等于 1 Ah 电池。上述结果只是估算值,实际结果会受电池状态、使用年限、温度、放电速度和其它因素的影响而发生变化。如果所用电池是全新的高质量电池,在室温下工作且工作时间在 1 小时到 1 年之间,则这种预估结果最贴近实际结果。




13. PCB 印制线宽度计算



使用 IPC-2221 标准提供的公式计算铜印刷电路板导体或承载给定电流所需“印制线”的宽度,同时保持印制线的温升低于规定的极限值。此外,如果印制线长度已知,还会计算总电阻、电压降和印制线电阻引起的功率损耗。由此求得的结果是估算值,实际结果会随应用条件而发生变化。我们还应注意,与电路板外表面上的印制线相比,电路板内层上的印制线所需的宽度要大得多,请使用适合您情况的结果。

如何计算印制线宽度
首先,计算面积:
面积[mils^2] = (电流[Amps]/(k*(温升[ ℃])^b))^(1/c)

然后,计算宽度:
宽度 [mils] = 面积 [mils^2]/(厚度[oz]*1.378[mils/oz])
用于 IPC-2221 内层时:k = 0.024、b = 0.44、c = 0.725
用于 IPC-2221 外层时:k = 0.048、b = 0.44、c = 0.725
其中 k、b 和 c 是由对 IPC-2221 曲线进行曲线拟合得出的常数。

公值:
厚度:1 oz
环境温度:25 C
温升:10 C

END

来源:电源研发精英圈

版权归原作者所有,如有侵权,请联系删除。

推荐阅读

互感器、电能表接线和原理讲解!

满足你的好奇,我们把示波器拆了!

别小看这不起眼的电阻,里面有很多学问!

电源Fan 了解行业动态,学习深度技术,观察微小事物——电源Fan,一个涨知识的公众号。
评论 (0)
  • 现阶段,Zigbee、Z-Wave、Thread、Wi-Fi与蓝牙等多种通信协议在智能家居行业中已得到广泛应用,但协议间互不兼容的通信问题仍在凸显。由于各协议自成体系、彼此割据,智能家居市场被迫催生出大量桥接器、集线器及兼容性软件以在不同生态的设备间构建通信桥梁,而这种现象不仅增加了智能家居厂商的研发成本与时间投入,还严重削减了终端用户的使用体验。为应对智能家居的生态割裂现象,家居厂商需为不同通信协议重复开发适配方案,而消费者则需面对设备入网流程繁琐、跨品牌功能阉割及兼容隐患等现实困境。在此背景
    华普微HOPERF 2025-04-17 17:53 49浏览
  •   无人机电磁兼容模拟训练系统软件:全方位剖析   一、系统概述   北京华盛恒辉无人机电磁兼容模拟训练系统软件,专为满足无人机于复杂电磁环境下的运行需求而打造,是一款专业训练工具。其核心功能是模拟无人机在电磁干扰(EMI)与电磁敏感度(EMS)环境里的运行状况,助力用户评估无人机电磁兼容性能,增强其在复杂电磁场景中的适应水平。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为
    华盛恒辉l58ll334744 2025-04-17 14:52 33浏览
  •   无人机蜂群电磁作战仿真系统软件,是专门用于模拟、验证无人机蜂群在电磁作战环境中协同、干扰、通信以及对抗等能力的工具。下面从功能需求、技术架构、典型功能模块、发展趋势及应用场景等方面展开介绍:   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提供了有力支持。   功能需求   电磁环境建模:模拟构建复杂多样的电磁环境,涵盖各类电磁干扰源与
    华盛恒辉l58ll334744 2025-04-17 16:49 55浏览
  •   北京华盛恒辉无人机电磁兼容模拟训练系统软件是专门用于模拟与分析无人机在复杂电磁环境中电磁兼容性(EMC)表现的软件工具。借助仿真技术,它能帮助用户评估无人机在电磁干扰下的性能,优化电磁兼容设计,保障无人机在复杂电磁环境中稳定运行。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为无人机电磁兼容模拟训练系统的推广和应用提供了有力支持。   系统功能   电磁环境建模:支持三维
    华盛恒辉l58ll334744 2025-04-17 15:10 41浏览
  • 一、行业背景与需求智能门锁作为智能家居的核心入口,正从单一安防工具向多场景交互终端演进。随着消费者对便捷性、安全性需求的提升,行业竞争已从基础功能转向成本优化与智能化整合。传统门锁后板方案依赖多颗独立芯片(如MCU、电机驱动、通信模块、语音模块等),导致硬件复杂、功耗高、开发周期长,且成本压力显著。如何通过高集成度方案降低成本、提升功能扩展性,成为厂商破局关键。WTVXXX-32N语音芯片通过“单芯片多任务”设计,将语音播报、电机驱动、通信协议解析、传感器检测等功能整合于一体,为智能门锁后板提供
    广州唯创电子 2025-04-18 09:04 98浏览
  •   无人机蜂群电磁作战仿真系统全解析   一、系统概述   无人机蜂群电磁作战仿真系统是专业的仿真平台,用于模拟无人机蜂群在复杂电磁环境中的作战行为与性能。它构建虚拟电磁环境,模拟无人机蜂群执行任务时可能遇到的电磁干扰与攻击,评估作战效能和抗干扰能力,为其设计、优化及实战应用提供科学依据。   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提
    华盛恒辉l58ll334744 2025-04-17 16:29 67浏览
  • 近日,全球6G技术与产业生态大会(简称“全球6G技术大会”)在南京召开。紫光展锐应邀出席“空天地一体化与数字低空”平行论坛,并从6G通信、感知、定位等多方面分享了紫光展锐在6G前沿科技领域的创新理念及在空天地一体化技术方面的研发探索情况。全球6G技术大会是6G领域覆盖广泛、内容全面的国际会议。今年大会以“共筑创新 同享未来”为主题,聚焦6G愿景与关键技术、安全可信、绿色可持续发展等前沿主题,汇聚国内外24家企业、百余名国际知名高校与科研代表共同商讨如何推动全行业6G标准共识形成。6G迈入关键期,
    紫光展锐 2025-04-17 18:55 120浏览
  •   无人机电磁环境效应仿真系统:深度剖析   一、系统概述   无人机电磁环境效应仿真系统,专为无人机在复杂电磁环境下的性能评估及抗干扰能力训练打造。借助高精度仿真技术,它模拟无人机在各类电磁干扰场景中的运行状态,为研发、测试与训练工作提供有力支撑。   应用案例   目前,已有多个无人机电磁环境效应仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁环境效应仿真系统。这些成功案例为无人机电磁环境效应仿真系统的推广和应用提供了有力支持。   二、系统功能  
    华盛恒辉l58ll334744 2025-04-17 15:51 58浏览
  • 置信区间反映的是“样本均值”这个统计量的不确定性,因此使用的是标准误(standard error),而不是直接用样本标准差(standard deviation)。标准误体现的是均值的波动程度,而样本标准差体现的是个体数据的波动程度,两者并非一回事,就如下图所显示的一样。下面优思学院会一步一步解释清楚:一、标准差和标准误,究竟差在哪?很多同学对“标准差”和“标准误”这两个概念傻傻分不清楚,但其实差别明显:标准差(Standard Deviation,σ或s):是衡量单个数据点相对于平均值波动的
    优思学院 2025-04-17 13:59 23浏览
  • 一、行业背景与需求随着智能化技术的快速发展和用户对便捷性需求的提升,电动车行业正经历从传统机械控制向智能交互的转型。传统电动车依赖物理钥匙、遥控器和独立防盗装置,存在操作繁琐、功能单一、交互性差等问题。用户期待通过手机等智能终端实现远程控制、实时数据监控及个性化交互体验。为此,将蓝牙语音芯片集成至电动车中控系统,成为推动智能化升级的关键技术路径。二、方案概述本方案通过在电动车中控系统中集成WT2605C蓝牙语音芯片,构建一套低成本、高兼容性的智能交互平台,实现以下核心功能:手机互联控制:支持蓝牙
    广州唯创电子 2025-04-18 08:33 91浏览
  • 1. 在Ubuntu官网下载Ubuntu server  20.04版本https://releases.ubuntu.com/20.04.6/2. 在vmware下安装Ubuntu3. 改Ubuntu静态IP$ sudo vi /etc/netplan/00-installer-config.yaml# This is the network config written by 'subiquity'network:  renderer: networkd&nbs
    二月半 2025-04-17 16:27 59浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦