超融合数据中心网络技术

智能计算芯世界 2021-11-02 00:00



摘要:现如今,数据中心正成为算力中心,为千行百业提供数字化底座,并基于海量数据挖掘其中的商业价值。超融合数据中心网络以全无损以太网来构建新型的数据中心网络,使通用计算、高性能计算、存储三大业务均能融合部署在同一张以太网上,同时实现全生命周期自动化和全网智能运维,可在服务器规模不变的情况下,显著提升数据中心的整体算力水平。


下载链接:超融合数据中心网络

01 智能时代促使数据中心向算力中心演进


人类社会正迈入万物感知、万物互联、万物智能的智能时代,物联网、大数据、5G、AI等新技术和各类创新应用层出不穷。


我国在《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》中再一次明确了“加快数字化发展,打造数字经济新优势,协同推进数字产业化和产业数字化转型,加快数字社会建设步伐,提高数字政府建设水平,营造良好数字生态,建设数字中国”的战略方针。

作为构建数字化社会的信息基石——数据中心,他承担着各类应用的数据存储、数据分析与数据计算的重任。从数据中挖掘商业价值已成为企业经营的核心任务之一,因此数据中心也越来越聚焦对数据的高效处理,这种处理能力我们通常称为“算力”。算力成为衡量现代数字生产力的重要指标。大家熟知的人脸识别、无人驾驶汽车、智慧工厂等,其背后都是数据中心对数字基础设施的高效整合与使用,并将其转化为某种应用维度的算力。从这个意义上说,数据中心又可以被称为“算力中心”。

图1-1 数字化社会的信息基石——数据中心

数据中心算力是服务器对数据进行处理后实现结果输出的能力,这是数据中心内计算、存储、网络三大资源协同能力的综合衡量指标。


根据ODCC(Open Data Center Committee,开放数据中心委员会)的定义,数据中心算力指标包含4大核心要素,即:通用计算能力、高性能计算能力、存储能力、网络能力。在服务器规模不变的情况下,提升网络能力可显著改善数据中心单位能耗下的算力水平。


02 什么是超融合数据中心网络


数据中心内存在三大资源区:通用计算区、高性能计算(HPC)区和存储区。


图1-2 数据中心内存在的三大资源区
  • 通用计算区:与数据中心外部的用户对接,提供指定的应用服务。这个区域中的服务器大量使用虚拟化、容器等技术,形成灵活的资源池来承载应用。本区域中的网络被称为应用网络、业务网络或前端网络,当前部署的是以太网。
  • 高性能计算区:配备了专用的高性能单元(如CPU、GPU)的服务器,完成指定的高性能计算任务或AI训练。这个区域中的服务器一般很少使用虚拟技术。本区域中的网络被称为高性能计算互联网络,当前部署的是IB(InfiniBand)网络。
  • 存储区:采用专用的存储服务器,对各类数据进行存储、读写和备份。本区域中的网络一般被称为存储网络,通常部署的是FC(Fibre Channel)网络。

算力持续稳定的输出,离不开三大资源区的相互配合。作为联接数据中心各类资源的大动脉,数据中心网络承载着保障数据高效流通的职责。


图1-3 三大区域之间的数据流

当前,通用计算区部署的传统以太网、高性能计算区部署的IB网、存储区部署的FC网,是三张异构网络,他们协议各异、架构割裂,带来了运维困难、专网生态封闭、成本高、无法实现全生命周期管理等问题。数据中心里这三张网络的融合,成为算力提升的必然要求。


华为超融合数据中心网络以全无损以太网来构建新型的数据中心网络,使通用计算、高性能计算、存储三大业务均能融合部署在同一张以太网上,同时实现全生命周期自动化和全网智能运维。

IT 架构层面:从本地集中式走向云端分布式

当前一些新兴的应用,如区块链、工业仿真、人工智能、大数据等,基本都建立在云计算的底座中。近些年,企业各类业务上云的步伐不断加速,云可以提供按需自助服务、快速弹性伸缩、多租户安全隔离、降低项目前期投资等价值优势。另外,在企业的数字化转型中,以金融和互联网企业为代表,大量的应用系统逐渐迁移到分布式系统上,也就是通过海量的 PC 平台来替代传统的小型机。这么做带来了高性价比、易扩展、自主可控等好处,但分布式系统架构同时也带来了服务器节点之间大量的网络互通需求。以太网已经成为云化分布式场景中的事实网络标准:

  • 以太网已具有很高的开放性,可以与各种云融合部署、可被云灵活调用管理。

  • 以太网具有很好的扩展性、互通性、弹性、敏捷性和多租户安全能力。

  • 以太网可以满足新业务超大带宽的需求。

  • 以太网从业人员多,用户基础好。


而传统数据中心高性能计算使用的 IB 网络,以及集中式存储使用的 FC 网络,生态封闭,资源割裂,演进缓慢,已无法匹配云化的发展诉求。根据 IDC 数据显示,近年来 FC IB 市场逐步萎缩,数据中心的云化趋势助长了对以太网的需求,以太网是当前以及未来主要的数据中心内部网络互联技术。

计算层面:CPU/GPU 出以太接口提升性能

以人工智能为代表的一系列创新应用正在快速发展,而人工智能后台算法依赖海量的样本数据和高性能的计算能力。为了满足海量数据训练的大算力要求,一方面可以提升 CPU 单核性能,但是目前单核芯片工艺在 3nm 左右,且成本较高;另外一方面,可以叠加多核来提升算力,但随着核数的增加,单位算力功耗也会显著增长,且总算力并非线性增长。据测算,当 128 核增至 256 核时,总算力水平无法提升 1.2倍。

随着算力需求的不断增长,从 P 级(PFLOPS,一秒 1015 次浮点运算)向 E 级 (EFLOPS,一秒 1018 次浮点运算)演进,计算集群的规模不断扩大,对集群之间互联的网络性能要求也越来越高,这使得计算和网络深度融合成为必然。

在计算处理器上,传统的 PCIe 的总线标准由于单通道传输带宽有限,且通道扩展数量也有限,已经无法满足目前大吞吐高性能计算场景的要求。当前业界的主流是在计算处理器内集成 RoCERemote Direct Memory Access over Converged Ethernet,基于融合以太的远程内存直接访问协议)以太端口,从而让数据通过标准以太网在传输速度和可扩展性上获得了巨大的提升。

这里的 Remote Direct Memory AccessRDMA)是相对于 TCP 而言的,如下图所示,在服务器内部,传统的 TCP 协议栈在接收/发送报文,以及对报文进行内部处理时,会产生数十微秒的固定时延,这使得在 AI 数据运算这类微秒级系统中,TCP 协议栈时延成为最明显的瓶颈。另外,随着网络规模的扩大和带宽的提高,宝贵的 CPU 资源越来越地多被用于传输数据。


RDMA 允许应用与网卡之间的直接数据读写,将服务器内的数据传输时延降低到接近 1μs。同时,RDMA 允许接收端直接从发送端的内存读取数据,极大地减少了 CPU 的负担。

在 高 性 能 计 算 场 景 中 , 当 前 有 两 种 主 流 方 案 来 承 载 RDMA :专用 IBInfiniBand)网络和以太网络。然而,IB 网络采用私有协议,架构封闭,难以与现网大规模的 IP 网络实现很好的兼容互通,同时 IB 网络运维复杂,OPEX 居高不下。用以太网承载 RDMA 数据流,即上文提到的 RoCE,已应用在越来越多的高性能计算场景。

存储层面:升级为全闪存 NVMe 接口

新业务对海量数据的存储和读写需求,催生了存储介质的革新,由 HDDHard Disk Drive,机械硬盘)快速向 SSDSolid-State Drive,固态硬盘)切换,这带来了存储性能近 100 倍的提升。在此过程中,出现了 NVMeNon-Volatile Memory express,非易失性内存主机控制器接口规范)存储协议,NVMe 极大提升了存储系统内部的存储吞吐性能,降低了传输时延。

相比而言,原来承载存储业务的 FC 网络,无论从带宽还是时延上,均已经成为当前存储网络的瓶颈。完成革新后的全新存储系统,需要一个更快、更高质量的网络。为此,存储与网络从架构和协议层进行了深度重构,新一代存储网络技术 NVMe over Fabric(简称 NVMe-oF)应运而生。NVMe-oF NVMe 协议应用到服务器主机前端,作为存储阵列与前端主机连接的通道,可端到端取代 SAN 网络中的 SCSISmall Computer System Interface小型计算机系统接口)协议。

NVMe over Fabric 中的“Fabric”,是 NVMe 的承载网络,这个网络可以是FCTCP RMDA。 

  • 对于 FC,其技术封闭、产业生态不及以太网;产业规模有限,技术发展相对迟缓,带宽不及以太网;从业人员稀缺、运维成本高、故障排除效率低。

  • 对于 TCP,在追求应用高性能的网络大潮中,RDMA 替换 TCP 已成为大势所趋。

  • 对于 RDMA,主流技术是 RoCERDMA over Converged Ethernet),即 NVMe over RoCE,他是基于融合以太网的 RDMA 技术来承载 NVMe


综上所述,基于以太网的 RoCE FC 性能更高(更高的带宽、更低的时延),同时兼具 TCP 的优势(全以太化、全 IP 化),因此 NVMe over RoCE 作为新一代存储网络已经脱颖而出,成为业界 NVMe-oF 的主流技术。

网络运维层面:部署与运维的全方位升级

在数据中心网络,当前存在几个较为突出的问题与挑战:

  • 管理难:数据中心网络里常常存在多个厂商的不同设备,接口不统一,很难统一管控。

  • 易出错:新业务的下发或老业务的变更,工作流程复杂,往往涉及多部门联动设计、调测,人工操作不仅效率低,而且容易出错。

  • 定位慢:如果发生异常,据统计,故障的定位平均时长达 76 分钟,严重影响业务的连续性,给企业带来损失。


这些都呼唤一个全新的数据中心网络的到来。华为超融合数据中心网络,在实现“三网合一”的基础上,在开放性、业务部署、运维层面进行变革,全方位应对上述挑战。


下载链接:超融合数据中心网络
智能无损网络(HPC场景)

数据密集型HPC产业趋势白皮书

中国AI平台市场报告(汇总)

《2021年中国AI开发平台市场报告》

《2021中国AI商业落地市场研究报告》

《中国AI开放平台精品报告》

2020年HPC市场总结和预测报告

ARM架构参考手册及文档

阿里云弹性高性能计算

中国高性能计算挑战与进展

高性能深度学习计算框架

超级计算机研究报告

深度报告:GPU研究框架

基于CPU/GPU异构量子高性能计算    


《高性能计算和超算专题》
1、超级计算的应用挑战
2、超级计算机研究报告
3、超算现状及报告
4、高性能计算分析
5、中国超算产业发展现状分析
6、高性能计算现状和未来

本号资料全部上传至知识星球,更多内容请登录智能计算芯知识(知识星球)星球下载全部资料





免责申明:本号聚焦相关技术分享,内容观点不代表本号立场,可追溯内容均注明来源,发布文章若存在版权等问题,请留言联系删除,谢谢。



电子书<服务器基础知识全解(终极版)>更新完毕,知识点深度讲解,提供182页完整版下载。

获取方式:点击“阅读原文”即可查看PPT可编辑版本和PDF阅读版本详情。



温馨提示:

请搜索“AI_Architect”或“扫码”关注公众号实时掌握深度技术分享,点击“阅读原文”获取更多原创技术干货。


智能计算芯世界 聚焦人工智能、芯片设计、异构计算、高性能计算等领域专业知识分享.
评论
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 127浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 82浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 92浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 80浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 123浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 211浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 100浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 147浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 172浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 113浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦