作为单片机研发设计的项目,它的最小电路工作系统包含电源电路、复位电路、时钟频率电路等;其中电源电路与复位电路,相信工程师都非常容易理解与设计。然而时钟频率电路,由于不同的开发项目功能需求不一样,设计的方案选择也不尽相同,很难得到有效的统一设计。- B项目电路系统需要与外界电路系统完成串口通信,通信数据要求不能出错;
- C项目包含一个时钟万年历功能,时间要求不能间断而且精度要求高。
针对单片机的时钟频率电路,工程师依据不同的项目要求去设计与选择匹配的方案,具体的选择方案包含三类。
所谓外部晶振方案,是指在单片机的时钟引脚X1与X2外部连接一个晶振。
单片机外部晶振图
优点:时钟频率精度高,稳定性能好;对于一些数据处理能力要求较高的项目,尤其是多个电路系统彼此需要信息通讯,如包含USB通讯、CAN通讯的项目,选用外部晶振的方案较多。缺点:由于增加了外部晶振,所以研发的BOM表元器件成本增加扩大了。所谓内部晶振方案,是指单片机利用内部集成的RC振荡电路产生的时钟频率。
单片机内部晶振图
优点:省去外部晶振,工程师可以有效的节约研发BOM元器件成本。缺点:RC振荡电路产生的时钟频率精度比较低,误差较大,容易引起一些高频率通信的数据交互错误。所谓时钟芯片方案,是指在单片机外部加入一个专门处理时钟的时钟芯片,用来给单片机提供精准的时钟信号。
单片机与时钟芯片电路
优点:精度高,误差小;适用于一些要求较高的电路项目。缺点:电路设计复杂,工程师开发难度较高,研发BOM元器件成本高。
关于时钟芯片的一些电路特性,以美信的DS1338型号为例说明:
DS1338时钟芯片
- VCC供电,是指电路项目系统的电源,同时也是单片机的电源。
- Vbat供电,是指电池供电的电源,由于某种原因在VCC供电突然失去的条件下,时钟芯片自动启用Vbat电池电源,用以保持时钟芯片内部的时钟信号处理,不必因为电路系统电源VCC断电而失去电路工作。
时钟芯片内部集成时间的“秒”“分”“时”“日”“周”“月”和“年”详细信息计时电路功能,通过IIC通信方式将时间的信息发送至单片机,单片机即可获得高精度的时钟信息。时钟芯片与单片机的接口是IIC通信接口,此接口方式为串口通信,工程师开发设计较为简单,容易实现电路功能;精度,是指时钟芯片在正常工作条件下产生的时钟误差;例如美信的DS1338时钟芯片精度控制在10PPM,换算成一天24小时误差精度在0.8秒左右。时钟芯片,一般用来处理精确计算时间的电路项目,如时间万年历。选择什么方案,主要由你需求决定。当然这三个方案都是针对一些工业与民用领域,如果涉及到航空航天应用领域,比如卫星导航与遥感测量等,则需要选择更高精度的时钟频率电路,如原子钟方案。
1.STM32U5,意法半导体新打造的超低功耗MCU旗舰版
2.【例说Arm-2D界面设计】从不规则图标的显示说起
3.STM8CubeMX和STM32CubeMX功能一样吗?
4.这九种情况下的单片机项目尽量不要接~
5.偷偷把室友的STM32换成了GD32后。。。
6.剖开苹果A15芯片,看看die的布局!
免责声明:本文系网络转载,版权归原作者所有。如涉及作品版权问题,请与我们联系,我们将根据您提供的版权证明材料确认版权并支付稿酬或者删除内容。