有关RF接收器噪声的一些讨论

射频百花潭 2021-10-26 19:43

系统设计人员一直都在为复杂的系统设计寻求简单的解决方案。我们不妨看看国防、航天和 5G 无线基础设施领域的 RF 前端接收器解决方案。本博客文章是一个实用指南,有助于降低设计复杂性,同时满足 5G 基础设施、国防和航天应用的严格噪声系数要求。


接收器噪声系数概述


许多 RF 前端 (RFFE) 系统都是独一无二的,但接收器在许多方面都比较相似。一般来说,RF 灵敏度是所有无线电接收器的关键规格参数。RF 接收器能够接收所需无线电信号,同时忽略不必要的信号,因此能够在其应用中更高效地运行。


测量接收器 RF 灵敏度有以下几种方法:



  • 噪声系数(NF) – 系统的 NF 是噪声因数的对数形式。它规定了接收器、系统各个组件以及整个系统的噪声性能。

  • 信噪比 (SNR) - 这是给定信号功率水平与系统内部噪声之间的比率。

  • 误码率 (BER) – 这是一种数字系统中采用的衡量方式。当信号电平下降或链路质量下降时,传输中的错误数或误码增加。测量 BER 可反映 SNR,但其格式通常对数字域更有用。

  • 误差矢量幅度 (EVM) – EVM 是一种用来量化数字无线电发射器和接收器性能的指标。由理想发射器发送或接收器接收的信号将会使所有 EVM 星座点精确地位于理想位置。然而,噪声、失真、相位噪声等缺陷会导致实际星座点偏离理想位置。理想情况下,发射器应生成尽可能靠近这些点的数字数据。EVM 用于衡量实际接收的数据元素与理想位置之间的距离。此外,放大器的线性度越高,EVM 就越好。



功率放大器 (PA) 和低噪声放大器 (LNA) 技术通常在放大接收器内的信号方面没有什么问题。相反,限制因素往往在于限噪方面,因为噪音会掩盖所需信号。对于无线通信、雷达、仪器仪表、卫星等应用,两个关键的性能考虑因素是接收器灵敏度和 SNR。

就接收器噪声而言,这是第一级或 LNA 以及随后会出现的任何损耗,这对于确定整个无线电接收器的整体性能至关重要。通过优化 LNA 的 SNR 和 NF,可提高接收器的整体性能。此外,必须针对整个系统带宽对该性能进行优化。

在 5G、国防和航天领域,LNA 和其他系统组件的带宽在不断增加,以实现处理当今应用所需的更高数据容量。带宽增加意味着噪声水平优化必须适应相同的带宽区域。这显然比较困难,但却必须实现,以满足当今的容量和吞吐量要求,以及实现高水平的接收器灵敏度。


5G RF接收器


网络密集化是有效实施 5G 的必要条件。通过增加每个区域的接入点数量,并在每个接入点部署更多的发射器和接收器,从而提高密集化程度。这种密度提升可提高无线网络的整体容量和吞吐量,通过使用灵敏度更高的高动态范围收发器,这些系统还可实现 5G。增加每个区域的基站和接入点数量也可以改变射频前端要求 (RFFE)。由于从用户设备 (UE) 到基站的平均距离更短,因此它可降低所需的发射功率。此外,这些接入点将添加更多的天线,以帮助增加空间流,从而提高容量和信号可靠性。

而且增加了多输入多输出 (MIMO),以进一步提高信号可靠性,从而提高上行系统容量。利用多天线和 MIMO 增加空间流可提高 SNR,而且效果很好,因为像 5G 这样先进的无线电系统需要更高的 SNR 来支持更高的数据速率。

许多 4G LTE 系统已经转向 5G。这些系统具有大规模 MIMO 能力,这是对传统 MIMO 的扩展,可在基站天线系统上提供更多的天线(如 32、64、128 根)和更多的天线阵列。这些大规模 MIMO 天线有助于集中能量,以便提高网络的吞吐量和效率。这些 5G 网络还具有非常高的带宽能力。例如:频率范围 FR1 (410 MHz – 7125 MHz) 可实现高达 100 MHz 的传输带宽。因此,LNA 设计人员正在创建超宽带 LNA,以支持多个 5G 频段 RF 链,从而简化产品设计。为实现这些宽带能力,LNA 必须在整个带宽范围内具备出色的噪声系数和 EVM 特性。此外,它们需要具有小尺寸,因为这些 RFFE 组件现在都位于塔顶的天线上。


图 1:RF 前端的组件


因为这些组件通常位于基站塔顶,所以它们需要高功率处理能力。它们必须能够承受高输入功率冲击,如果受到冲击,还必须能够非常迅速地恢复并再次开始运行。因此,LNA 等组件作为链路中位于接收器输入开关之后的第一个组件,需要具备 20 dBm 或更高的输入功率处理能力,以满足该任务需求。


国防和航天接收器

国防和航天 RFFE 领域也发生了许多变化。特别是在军事雷达、卫星通信、电子战通信和数字接收器领域。下面是一些基本框图。正如您从众多嵌入式模块设计中所看到的,这会明显推动采用小尺寸、轻量级、高集成度的产品,将接收和发射链集成在一个封装(如 5G 应用)中。而且不出大家所料,这些特性对国防和航天领域同样具有吸引力,并与 SWaP 的(尺寸、重量和功率)目标一致。


图 2:RFFE 在国防和航天领域的用例


国防和航天 (D&A) 领域的接收器产品不仅需要高功率功能以实现出色的放大性能,而且还要求能够在诸如基础设施领域的极端条件下正常运行。但在更高输入电平(数千瓦范围)下,此类接收器产品通常需要具备耐受力和抗干扰能力。这主要用于军事、航天雷达和军事通信应用,在这些应用中,电子对抗 (ECM) 可能被用作一种防御战略来压制接收器。


因此,具有耐受力和抗电子干扰(如无线电干扰)能力的接收器需要能够承受高功率冲击。如果在输入端受到高功率冲击,它们应能够承受冲击,并迅速恢复通信。这些设备还必须能够在比以往更大的带宽范围内运行。

过去,由于技术限制,D&A 数字接收器一直都是窄带型。但现在情况已有所改变,因为砷化镓、氮化镓和硅等新技术的进步允许使用更大的可持续带宽。这可实现许多全新的国防和航天应用,并为现有产品带来一些全新功能。

许多军事应用都需要这种具有较低截获/雷达探测概率的宽带和多频段通信。通过增加跳频以减少信号检测,可采用宽带宽和频谱进行传输和接收。这些方面可能会增加接收器上的噪声,并降低保护能力。如果接收器长时间暴露在高功率水平下,组件性能可能会迅速下降,从而出现性能问题或导致组件报废。因此,设计人员必须采取必要措施,以确保可靠性和接收器灵敏度。


优化噪声性能

最终,上述领域中的每个单独应用都会推动系统设计和需求发展。但是,在较高电平下,一些 RF 前端要求保持不变。


接收器的噪声性能通常是从 RFFE 的第一级开始考虑。RFFE 的信号电平最低,如果信号中存在噪声,则很难确定哪些是噪声,哪些是传入信号。当越过开关、LNA,然后进入驱动器级,所有信号都会被放大。确定传入信号将变得更加困难。因此,在 LNA 之前和 LNA 处,必须确保组件中的噪声最低。在 LNA 中,尽早分离首选信号与输入噪声至关重要,因为该性能会影响整个接收链。


最优参数权衡可以实现优化的性能


设计人员必须在增益、增益平坦度、输入/输出匹配、线性度、功耗和尺寸等参数之间做出至关重要的权衡,同时确保 LNA 具有内在的稳定性。设计人员必须确保这些参数之间的平衡,同时保持系统稳定,并检查系统在整个操作条件范围内的稳定性。


较低的接收器噪声系数确实可以提高性能和覆盖范围,但系统设计人员必须做出权衡,因为更优的 NF 可能会导致接收器性能收益减少。因此,在一个应用中进行的标称改进可能并不值得在另一个应用中实施。Qorvo 的级联分析计算器可为系统级设计权衡提供一个起点。


图 3:Qorvo 设计中心的级联计算器


在图 3 所示应用中,一个重要的考虑因素就是 LNA 与其后面的插入损耗(在上述示例中为滤波器)之间的比率。如果 LNA 后的滤波器会产生损耗,则 NF 就会增加。例如,在上述场景中,如果 LNA 的第 1 级增益为 15 dB,而不是 19 dB,那么 NF 将为 0.47 dB,而不是如图所示的 0.37 dB。此外,如果 LNA 的增益为 19 dB,且第二级滤波器的插入损耗为 -4.0 dB,那么 NF 将为 0.39 dB,也就是说 NF 再次增加。


接收器应用和温度


降低输入噪声的一个显而易见的方法就是选用具有最佳 NF 参数的 LNA。接收器 LNA 的另一个重要考虑因素就是其随温度变化的性能。温度对整个频率范围内的增益平坦度和 LNA 的稳定性具有重要影响。这两个参数都可能会影响 NF 的变化。通过散热器或散热技术冷却 LNA 或前端,可以改善热噪声。匹配的设计也有助于降低前端的温度和热噪声。射电天文学中的一些应用采用低温冷却的方式来保持较低的 NF。此外,LNA 的稳定性至关重要,因为如果 LNA 不稳定,系统 NF 就会增加。


噪声温度

每个噪声源都有一个相当的噪声温度。噪声温度用于描述设备的噪声性能,而不是 NF,且主要用作为系统参数。这使得输入噪声温度的概念更有意义,使用更方便。它出现在接收器的输入端,那里的信号电平较低,而且是任何电路在给定温度下所能达到的极限最低噪声。它还均匀地分布在整个系统频谱中。热噪声也是系统带宽的函数。将带宽与频率响应和输入信号匹配,可以降低热噪声。为了帮助您计算 NF 和 NF 温度,Qorvo 了提供一个在线计算器,如下所示。


图 4:Qorvo 设计中心的噪声系数温度计算器



一些额外的降噪设计策略


在设计中使用噪声最小的一流 LNA。

进行系统设计时,需考虑应用的真正标称温度。

通过屏蔽或消除噪声源,隔离外部噪声或防止其影响接收器的性能或输入。

降低直流配电电路的特性阻抗,以减少噪声耦合。

避免沿信号路径直至 LNA 输入端使用产生损耗的元件。

保持 LNA 输入和输出的射频阻抗,并将具有噪声的走线或电路与 LNA 或接收器路径隔离。

此外,使用 GaN 而不是限幅器也有助于降低噪声,因为限幅器会给系统增加噪声。GaN 还可以提高接收器的耐用性。


限幅器和循环器对 D&A 接收器的影响


如前所述,LNA 的高输入功率性能至关重要。在输入端增加一个限幅器或循环器可以降低高输入功率对接收器可能产生的影响。这确实有助于保护接收器,但会增加 LNA 处的噪声。此方法也会降低接收器的灵敏度,从而缩小信号覆盖范围,降低吞吐量和性能。因此,如果您选择输入功率非常高的 LNA,则不需要使用限幅器或循环器,从而有助于提高接收器的整体性能。

最后,噪声系数和系统线性度也会影响接收器灵敏度。为了获得最佳的接收器灵敏度性能,必须在几个关键参数(如增益、匹配、线性度和带宽)之间进行权衡,同时密切关注干扰、温度以及维持接收器抗冲击的能力。

来源:Qorvo半导体

声明:


本号对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有。

投稿/招聘/推广/宣传 请加微信:15989459034


射频百花潭 国内最大的射频微波公众号,专注于射频微波/高频技术分享和信息传递!
评论 (0)
  •   安全生产预警系统作为现代工业与安全管理的重要组成部分,正以前所未有的技术引领力,创新性地塑造着未来的安全管理模式。这一系统通过集成多种先进技术,如物联网、大数据、人工智能、云计算等,实现了对生产环境中潜在危险因素的实时监测、智能分析与及时预警,为企业的安全生产提供了坚实的技术保障。   技术引领:   物联网技术:物联网技术使得各类安全监测设备能够互联互通,形成一张覆盖全生产区域的安全感知网络。传感器、摄像头等终端设备实时采集温度、压力、气体浓度、人员位置等关键数据,为预警系统提供丰富的
    北京华盛恒辉软件开发 2025-04-05 22:18 52浏览
  • 在影像软的发展历程中,美图曾凭借着美图秀秀等一系列产品,在“颜值经济”的赛道上占据了领先地位,成为了人们日常生活中不可或缺的一部分,也曾在资本市场上风光无限,2016 年上市时,市值一度超过46亿美元,备受瞩目。 然而,随着市场的不断发展和竞争的日益激烈,美图逐渐陷入了困境。商业模式单一,过度依赖在线广告收入,使得其在市场波动面前显得脆弱不堪;多元化尝试,涉足手机、电商、短视频、医美等多个领域,但大多以失败告终,不仅未能带来新的增长点,反而消耗了大量的资源。更为严峻的是,用户流失问题日
    用户1742991715177 2025-04-05 22:24 61浏览
  • 在科技浪潮奔涌的当下,云计算领域的竞争可谓是如火如荼。百度智能云作为其中的重要参与者,近年来成绩斐然。2024年,百度智能云在第四季度营收同比增长26%,这样的增速在行业内十分惹眼。回顾全年,智能云业务的强劲增长势头也十分明显,2024年第一季度,其收入达到47亿元,同比增长12%;第二季度营收51亿元,同比增长14%。从数据来看,百度智能云在营收方面一路高歌猛进,展现出强大的发展潜力。然而,市场对百度智能云的表现似乎并不完全买账。2024年,尽管百度智能云数据亮眼,但百度股价却在震荡中下行。在
    用户1742991715177 2025-04-06 20:25 61浏览
  • 及时生产 JIT(Just In Time)的起源JIT 起源于 20 世纪 70 年代爆发的全球石油危机和由此引发的自然资源短缺,这对仰赖进口原物料发展经济的日本冲击最大。当时日本的生产企业为了增强竞争力、提高产品利润,在原物料成本难以降低的情况下,只能从生产和流通过程中寻找利润源,降低库存、库存和运输等方面的生产性费用。根据这种思想,日本丰田汽车公司创立的一种具有特色的现代化生产方式,即 JIT,并由此取得了意想不到的成果。由于它不断地用于汽车生产,随后被越来越多的许多行业和企业所采用,为日
    优思学院 2025-04-07 11:56 77浏览
  • 医疗影像设备(如CT、MRI、超声诊断仪等)对PCB的精度、可靠性和信号完整性要求极高。这类设备需要处理微伏级信号、高频数据传输,同时需通过严格的EMC/EMI测试。制造此类PCB需从材料选择、层叠设计、工艺控制等多维度优化。以下是关键技术与经验分享。 1. 材料选择:高频与生物兼容性优先医疗影像设备PCB常采用 Rogers RO4000系列 或 Isola FR4高速材料,以降低介电损耗并保证信号稳定性。例如,捷多邦在客户案例中曾为某超声探头厂商推荐 Rogers RO4350B
    捷多邦 2025-04-07 10:22 64浏览
  • 在追求环境质量升级与产业效能突破的当下,温湿度控制正成为横跨多个行业领域的核心命题。作为环境参数中的关键指标,温湿度的精准调控不仅承载着人们对舒适人居环境的期待,更深度关联着工业生产、科研实验及仓储物流等场景的运营效率与安全标准。从应用场景上看,智能家居领域要求温湿度系统实现与人体节律的协同调节,半导体洁净车间要求控制温湿度范围及其波动以保障良品率,而现代化仓储物流体系则依赖温湿度的实时监测预防各种产品的腐损与锈化。温湿度传感器作为实现温湿度监测的关键元器件,其重要性正在各行各业中凸显而出。温湿
    华普微HOPERF 2025-04-07 10:05 66浏览
  • 引言:小型化趋势下的语音芯片需求随着消费电子、物联网及便携式设备的快速发展,产品设计对芯片的小型化、高集成度和低功耗提出了更高要求。厂家凭借其创新的QFN封装技术,推出WTV系列(如WTV380)及WT2003H系列语音芯片,以超小体积、高性能和成本优势,为紧凑型设备提供理想解决方案。产品核心亮点1. QFN封装技术赋能超小体积极致尺寸:WTV380采用QFN32封装,尺寸仅4×4毫米,WT2003H系列同样基于QFN工艺,可满足智能穿戴、微型传感器等对空间严苛的场景需求。高密度集成:QFN封装
    广州唯创电子 2025-04-07 08:47 57浏览
  • 【拆解】+沈月同款CCD相机SONY DSC-P8拆解 这个清明假期,闲来无事,给大伙带来一个老古董物品的拆解--索尼SONY DSC-P8 CCD相机。这个产品是老婆好几年前在海鲜市场淘来的,由于显示屏老化,无法正常显示界面了,只有显示背光。但是这也无法阻止爱人的拍照。一顿盲操作依旧可以拍出CCD古董相机的质感。如下实拍: 由于这个相机目前都在吃灰。我就拿过来拆解,看看里面都是怎样个设计,满足下电子爱好者的探索。 首先给大伙展示下这台老相机的全貌。正视图  后视图 
    zhusx123 2025-04-06 17:38 78浏览
  • 引言:POPO声的成因与影响在语音芯片应用中,WT588F08A作为一款支持DAC+功放输出的高集成方案,常因电路设计或信号处理不当,在音频播放结束后出现POPO声(瞬态噪声)。这种噪声不仅影响用户体验,还可能暴露电路设计缺陷。本文将基于实际案例,解析POPO声的成因并提供系统化的解决方案。一、POPO声的根源分析1. 功放电路状态切换的瞬态冲击当DAC输出的音频信号突然停止时,功放芯片的输入端若处于高阻态或无信号状态,其内部放大电路会因电源电压突变产生瞬态电流,通过喇叭表现为POPO声。关键因
    广州唯创电子 2025-04-07 09:01 72浏览
  • 【拆解】+南孚测电器拆解 之前在天猫上买了一盒南孚电池,他给我送了一个小东西—测电器。今天我们就来拆解一下这个小东西,看看它是怎么设计和工作的。 三颗指示灯显示电池剩余电量。当点亮3颗LED时,则表示点亮充足。当点亮2颗LED时,则表示还能用。当点亮1颗LED时,表示点亮地建议更换,当无法点亮LED时,则表示没电了。外壳上还印有正负极,以免用户将电池放反。 这个小东西拆解也很方便,一个螺丝刀稍微撬几下。外壳就下来了,它是通过卡扣连接。 开盖后,测电线路板清晰呈现在眼前。 让我们看看小小的线路板有
    zhusx123 2025-04-05 15:41 47浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦