晓宇姐姐带你软硬结合,感受下ADC DMA采集多路电压电流的最佳姿势

原创 芯片之家 2021-10-25 12:15
作者:晓宇,排版:晓宇
微信公众号:芯片之家(ID:chiphome-dy)
在我们的电子设计中,经常需要对外部的模拟量进行采集,如一些传感器的输出量,电位器的旋转量等等,特别是电压电流的采集可以说是家常便饭,这些都离不开MCU最常用的外设,ADC,它可以将模拟量转换为数字量,量化后给MCU进行处理,稍微复杂一点的产品,往往需要多路模拟量采集,今天晓宇姐姐结合实际案例,跟大家一起分享一个我经常用的方案之一,通过定时器自动触发多路ADC进行电压电流的采集,并通过DMA传送数据到内存,在需要的时候,去内存读取数据并进行处理即可,小伙伴们,搞起来吧!
本次我们采集3路AD信号,一路电压,一路电流,还有一个电位器,方便观察数据。

硬件电路分析

图1:AD多路采集

1、首先来看电压采集跟电位器(模拟传感器信号)的采集,24V的电源电压需要分压,这两个电压都足够高,所以直接送到MCU的AD引脚即可,这里记得要并一个100nF的电容,作用是存储电荷的,ADC在快速充放电的时候,这个电容可以起到补给的作用,另外也有滤波的作用,所以这个一定要加。
2、电流的采集,这里用了一个经典的差分放大电路,放大原理就不细说了,大概就是经过运放的虚短,虚断等特性,这里方便计算,一般取R4+R5=R8+R9,R6=R10,最终的传递函数位Vout=(CURR_I - GND)* R6/(R4+R5),这里的放大倍数为10倍。
一般情况下,在将运算放大器的输入端连接到放大器,使用“反相”或“非反相”输入端放大单个输入信号,而另一个输入端接地,也是可以的,只是只能放大一个电平,这里用差分电路展示,上图的反向输入可以接其它电压,有时候我们需要放大的电压两端电势没有一个接地的,比如我们在母线电压输入端串联一个小电阻,分别将电阻两边的电压送到差分放大器,就可以实现母线电流的采集了。

软件分析

这里以STM32F051来举例说明,STM32F051包含一个分辨率为12位的ADC模块,所以采样精度能达到Vref/4096,同时具有19个ADC通道,其中16个外部采样通道和3个内部信号源。

我们一般需要配置引脚,分辨率,数据对齐,触发方式,采样方式,扫描方式等等,这里有一个规则通道跟注入通道之分,注入就是可以插队的意思,有一些时序精度要求很高的场合会用,一般场合用规则通道即可。

关于通道组,这里有一个点需要注意的是,一个通道组转换完才会进入中断,并不是单个通道,又因为MCU内部只有一个ADC_DR,所以有部分同学在开始配置多通道后发现采集的数据都不对,其实我们这样记就行了,如果是只采样一个通道,分单次转换模式跟连续转换模式(重复启动ADC),如果是规则多通道的采集,我们必须要使用扫描模式,而且,这里一定要开启DMA功能,DMA会在每个通道转换完之后,自动的把结果传到内存中。

图2:DMA简易示图

关于DMA,大家应该都有过了解了,DMA控制器依赖于处理器内核,但DMA不影响总线传输,因为DMA控制器总是在系统总线空闲的时候使用总线。该总线实现处理器和DMA控制器之间最优化设计,使两者之间的冲突降到最低,因此传输性能得到提高。如上图所示,我们配置完DMA之后,每次数据采集完毕,DMA会自动的帮MCU把数据运送到我们指定的内存空间,这个搬运不依赖于CPU时钟,所以也算是实现了并行操作,相比在主程序中开启采集,我们的MCU可以有更多的时间去计算运行别的东西。
关于触发,我们可以选择手动触发一次ADC采集,也可以通过定时器的中断去触发这里强调一点,如果只是利用定时器的更新事件去触发ADC,我们也没必要开启更新中断,定时器会源源不断的产生更新事件。如果选择开启,可以在中断中执行一些操作,例如通过某些参数变化情况去改变AD采集的间隔时间。
我们采集3通道的值,分别是通道4(VOL_AD)、通道11(CURR_O)、通道14(POT_AD)
下面上代码:
1、ADC IO 配置,配置为模拟输入
GPIO_InitTypeDef GPIO_InitStructure;DMA_InitTypeDef DMA_InitStructure;ADC_InitTypeDef ADC_InitStructure; NVIC_InitTypeDef NVIC_InitStructure; 
/*-------ADC GPIO配置---------*/GPIO_InitStructure.GPIO_Pin = CURR_O | POT_AD;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN; //模拟输入GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;GPIO_Init(GPIOC, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = VOL_AD;GPIO_Init(GPIOA, &GPIO_InitStructure);
2、DMA配置,配置3个通道,所以内存中定义一个结构体存储DMA搬运过来的值
adc_sample_t adc_data;
DMA_InitTypeDef DMA_InitStructure;RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1,ENABLE);  //DMA时钟开启
/*-------DMA配置AD采集---------*/DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&ADC1->DR;//外设基地,DMA搬运数据的地址 DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)&adc_data;//内存基地址,DMA搬运数据放到内存的地址DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;//外设到内存,源是外设DMA_InitStructure.DMA_BufferSize = 3;//3个通道DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;//外设地址不变,不自增DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;//不同通道的数据,内存要自增DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;//外设数据16位DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;//内存数据16位DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;//DMA循环模式DMA_InitStructure.DMA_Priority = DMA_Priority_Medium;//DMA优先级为中DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;//内存到内存失能   DMA_Init(DMA1_Channel1,&DMA_InitStructure);
/*--------------DMA中断配置-----------------*/NVIC_InitStructure.NVIC_IRQChannel = DMA1_Channel1_IRQn;NVIC_InitStructure.NVIC_IRQChannelPriority = 1;NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;NVIC_Init(&NVIC_InitStructure);   DMA_ClearFlag(DMA1_FLAG_TC1);//清除传送完成中断标志DMA_ITConfig(DMA1_Channel1,DMA_IT_TC,DISABLE);//中断先不打开DMA_Cmd(DMA1_Channel1,ENABLE);

3、ADC配置,配置各项参数

/*-------ADC配置,用于采样电流,电压,电位器---------*/ADC_JitterCmd(ADC1,ADC_JitterOff_PCLKDiv4,ENABLE);//移除时钟为PCLKDiv4时在触发到启动转换延迟中产生的抖动RCC_ADCCLKConfig(RCC_ADCCLK_PCLK_Div4);//ADC时钟为PLCK的4分频。也就是12MHz       ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;//ADC的位数。这里选择12位ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;//连续转换模式禁能ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_Falling;//触发沿为下降沿触发   ADC_InitStructure.ADC_ExternalTrigConv =  ADC_ExternalTrigConv_T1_CC4;//ADC的触发源为定时器1的第四通道ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;//数据对齐为右对齐ADC_InitStructure.ADC_ScanDirection = ADC_ScanDirection_Upward;//通道的扫描方向,由小到大扫描ADC_Init(ADC1, &ADC_InitStructure);/*-------ADC通道及采样时间配置---------*/    ADC_ChannelConfig(ADC1,Vbus_VOLTAGE_CHANNEL, ADC_SampleTime_7_5Cycles);ADC_ChannelConfig(ADC1,Bridge_CURRENT_CHANNEL, ADC_SampleTime_7_5Cycles);ADC_ChannelConfig(ADC1,ELE_GUN_CHANNEL, ADC_SampleTime_7_5Cycles); /*-------使用ADC前需要先校准---------*/ADC_GetCalibrationFactor(ADC1);ADC_Cmd(ADC1, ENABLE);/*-------------等待ADC准备好--------------*/while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_ADRDY));/*-------------使能ADC的DMA传输功能--------------*/ADC_DMACmd(ADC1,ENABLE);/*-------------ADC的DMA模式配置--------------*/ADC_DMARequestModeConfig(ADC1,ADC_DMAMode_Circular);    ADC_StartOfConversion(ADC1);//开始转换

4、定时器配置,这里只开启通道4的下降沿触发ADC执行一次采集,想要更改采集的时间间隔更改通道4的占空比TIM1->CCR4即可。

/*------------------结构体变量---------------------*/GPIO_InitTypeDef GPIO_InitStructure;TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;TIM_OCInitTypeDef  TIM_OCInitStructure;NVIC_InitTypeDef NVIC_InitStructure;/*------------定时器时钟开启---------------------*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);   /*-------PWM GPIO配置---------*/GPIO_InitStructure.GPIO_Pin   = GPIO_Pin_11;GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_AF;GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_PuPd  = GPIO_PuPd_NOPULL;GPIO_Init(GPIOA, &GPIO_InitStructure); /*---------PWM复用引脚---------*/  GPIO_PinAFConfig(GPIOA, GPIO_PinSource11, GPIO_AF_2); /*-------PWM时基配置---------*/TIM_TimeBaseStructure.TIM_Prescaler= 0;TIM_TimeBaseStructure.TIM_CounterMode= TIM_CounterMode_Up;  TIM_TimeBaseStructure.TIM_Period= 3199;//频率为15K,TIM1_Period = (SystemCoreClock / Frequnecy) - 1                       TIM_TimeBaseStructure.TIM_ClockDivision= 0;TIM_TimeBaseStructure.TIM_RepetitionCounter= 0;TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure);    /*-------PWM配置---------*/TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;//PWM模式一TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;//输出使能,可以在通道4引脚看到占空比波形    TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Disable;//互补通道输出禁能TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;//有效电平为高      TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High;//互补通道有效电平为高 TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;//空闲时输出高      TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Set;//互补通道空闲时输出高
/*---------初始化触发AD采样的时间---------*/    TIM_OCInitStructure.TIM_Pulse = 100; //占空比TIM_OC4Init(TIM1, &TIM_OCInitStructure);/*------------通道4触发中断使能---------------*/    TIM_ITConfig(TIM1,TIM_IT_CC4,ENABLE); NVIC_InitStructure.NVIC_IRQChannel = TIM1_CC_IRQn; NVIC_InitStructure.NVIC_IRQChannelPriority = 2; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure);
/*--------初始化先关闭定时器------------*/    TIM_Cmd(TIM1,DISABLE);/*--------使能PWM输出------------*/TIM_CtrlPWMOutputs(TIM1,ENABLE); 
5、DMA中断,AD采集完一组数据,进入DMA中断
void DMA1_Channel1_IRQHandler(void){    uint32_t adc_value;    adc_value= adc_data.vol;    Flag.voltage = adc_value;//电压值    adc_value= adc_data.curr_o;    Flag.current = adc_value;//电流值    adc_value= adc_data.pot;    Flag.pot = adc_value;//电位器值    DMA_ClearFlag(DMA1_FLAG_TC1);}
6、定时器中断,可以不加,这里展示一下
void TIM1_CC_IRQHandler(void){    if(TIM_GetITStatus(TIM1, TIM_IT_CC4) != RESET)    {        TIM_ClearITPendingBit(TIM1, TIM_IT_CC4);        TIM1->CCR4 = 500//这里可以更改ADC的采集间隔    }   }
7、头文件
#ifndef __ADC_H#define  __ADC_H
#include "stm32f0xx.h"
/*-----------ADC宏定义---------------*/#define ADC_POARTC GPIOC#define CURR_O GPIO_Pin_1 #define POT_AD GPIO_Pin_4
#define ADC_POARTA GPIOA#define VOL_AD GPIO_Pin_4
#define CURR_O_CHANNEL ADC_Channel_11#define POT_CHANNEL    ADC_Channel_14#define VOL_CHANNEL ADC_Channel_4
/*---------结构体定义-----------*/typedef struct {    uint16_t vol;  uint16_t curr_o; uint16_t pot; }adc_sample_t;
extern adc_sample_t adc_data;void ADC_DMA_Init(void);
#endif /* __ADC_H */
8、主程序中,全部初始化并且开启后,只需要从内存中读取三个值就可以了,想要更改采样的间隔时间就更改定时器1中通道4的占空比值。
/* * main.c * *      Created on: 20171229   *      @Author:  *      @version V1.0.0  *                        ,%%%%%%%%, *                      ,%%/\%%%%/\%% *                     ,%%%\c''''J/%%% *           %.        %%%%/ o  o \%%% *           `%%.      %%%%       |%%% *            `%%      `%%%%(__Y__)%%' *            //        ;%%%%`\-/%%%' *            ((      /   `%%%%%%%' *             \\     .'           | *              \\   /        \  | | *               \\/          ) | | *                \          /_ | |__ *                (____________))))))) ¹¥³Çʨ * */ float voltage, current; int main(void){       //一系列初始化后    //.....     //DMA中断使能    DMA_ITConfig(DMA1_Channel1,DMA_IT_TC,ENABLE);       //定时器1使能    TIM_Cmd(TIM1,ENABLE);    printf("HELLO ADC\r\n");    while (1)    {        voltage = Flag.voltage / 112.84f;  // (Flag.voltage*3.3*51.7)/(4096*4.7)        current = Flag.current / 4965;  //Flag.motor_current*((3.3/4096)/10)/0.4        pot = Flag.pot / 1241//Flag.pot*3.3/4096                //数据处理        //...    }}
到这里,我们在配置好之后,基本上就不用管了,需要的时候就读取内存中数据的值就可以了,一切基本都是自动完成的,我们的主程序可以干更重要的事情关于数据,这里只是展示一下,计算出的都是单次采集一组的值,大家可以根据自己的实际场景进行一些算法处理,如平均值采样法、递推平均值采样法等等,这里由于篇幅问题这里就不一一展开说了,关于ADC其实还有很多学问,下次再跟大家分享!

关于电子软硬件的学习,希望大家Enjoy!码字不易,喜欢点赞转发,您的支持就是我继续创作的最佳动力!

灰常实用的一键开关机电路,各位大佬进来mark一下?


老宇哥手把手教你分析过压保护电路设计,你GET到精髓了吗?


硬件研发,除了电子元器件成本,还有什么成本?


真实案例,现场的MOS管大面积烧毁,百思不得其姐,求大神们分析原因


评论
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 73浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 72浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 94浏览
  • 职场是人生的重要战场,既是谋生之地,也是实现个人价值的平台。然而,有些思维方式却会悄无声息地拖住你的后腿,让你原地踏步甚至退步。今天,我们就来聊聊职场中最忌讳的五种思维方式,看看自己有没有中招。1. 固步自封的思维在职场中,最可怕的事情莫过于自满于现状,拒绝学习和改变。世界在不断变化,行业的趋势、技术的革新都在要求我们与时俱进。如果你总觉得自己的方法最优,或者害怕尝试新事物,那就很容易被淘汰。与其等待机会找上门,不如主动出击,保持学习和探索的心态。加入优思学院,可以帮助你快速提升自己,与行业前沿
    优思学院 2025-01-09 15:48 68浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 59浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 111浏览
  • HDMI 2.2 规格将至,开启视听新境界2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新HDMI规范为规模庞大的 HDMI 生态系统带来更多选择,为创建、分发和体验理想的终端用户效果提供更先进的解决方案。新技术为电视、电影和游戏工作室等内容制作商在当前和未来提供更高质量的选择,同时实现多种分发平台。96Gbps的更高带宽和新一代 HDMI 固定比率速率传输(Fixed Rate Link)技术为各种设备应用提供更优质的音频和视频。终端用户显示器能以最
    百佳泰测试实验室 2025-01-09 17:33 84浏览
  • 在当前人工智能(AI)与物联网(IoT)的快速发展趋势下,各行各业的数字转型与自动化进程正以惊人的速度持续进行。如今企业在设计与营运技术系统时所面临的挑战不仅是技术本身,更包含硬件设施、第三方软件及配件等复杂的外部因素。然而这些系统往往讲究更精密的设计与高稳定性,哪怕是任何一个小小的问题,都可能对整体业务运作造成严重影响。 POS应用环境与客户需求以本次分享的客户个案为例,该客户是一家全球领先的信息技术服务与数字解决方案提供商,遭遇到一个由他们所开发的POS机(Point of Sal
    百佳泰测试实验室 2025-01-09 17:35 78浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 74浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 80浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 111浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 93浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 87浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦