射频技术中的常用单位

云脑智库 2021-10-20 00:00


来源 | RFID世界网

智库 | 云脑智库(CloudBrain-TT)

云圈 | “云脑智库微信群”,请加微信:15881101905,备注您的研究方向


1.射频技术中的基本单位

射频(Radio Frequency, RF)技术中常见单位很多,我们针对常见的频率单位、长度单位(波长、天线长度)、阻抗单位、电流单位、电压单位、电容单位、电感单位和功率单位简单介绍。有一点需要注意,所有的单位都是按照“千进位”(除dB外)。比如阻抗单位为:欧姆、千欧和兆欧。

l  频率单位——赫兹Hz   kHz   MHz    GHz
l  长度单位——米   m   mm    km  
l  阻抗单位——欧姆 Ω   kΩ     MΩ
l  电流单位——安培 A   nA     uA    mA
l  电压单位——伏特 V   mV     kV
l  电感单位——亨   H   nH     uH    mH
l  电容单位——法拉 F    pF     nF    uF 
l  功率单位——绝对单位:瓦特W  uW  mW;相对单位:dBm dBW

2. dB与dBm

当看到dBm和dBW这两个单位的时候,很多读者会觉得很奇怪,为什么不是“毫”、“千”、“兆”呢?下面就介绍一下神奇的dB。

发射机发射的信号可能会是到达接收机信号的十亿倍,乘或除这么大的数字是很难把握的,于是就出现了使用加减法来代替乘除法的对数。
(1)dB的概念

在射频中,只需要知道有关对数的两个知识点。其一,对数是两个值的比值;其二,该比值的单位是分贝(dB)。其定义是10lg(输出功率/输入功率),对于放大器其定义为20lg(输出电压/输入电压)。

如前所述,如一个放大器将信号功率放大100倍,换算成分贝,就是增益为20dB;如果放大器将信号电压放大100倍,换算成分贝,则是增益为40dB。

分贝(dB)定义:  


‍‍‍‍要注意的是,根据功率和电压(电流)的比值前面乘的系数不同,功率是10倍,电压(电流)是20倍。平时说的增益等都是指的功率。

只需要记住两种dB的转换就可以进行简单的分贝转换:

  • +3dB指的是2倍大(乘以2);
  • +10dB指的是10倍大(乘以10);
  • -3dB指的是减小到1/2(除以2);
  • -10dB指的是减小到1/10(除以10);
  • 0dB 指的是没有变大和变小就是1。

【例2-1】如果信号的放大增益为4000倍,那么放大增益为多少dB?

解:本题可以通过两种方法进行计算,分别是公式计算法和快速计算法。增益用英文单词Gain表示。

公式计算法: 根据式(2-1)可得
快速计算法:已知Gain=4000= 2 × 2 × 10 × 10 × 10;

所以Gain = 3dB + 3dB + 10dB + 10dB  + 10dB = 36dB 。

可以看到通过快速计算法不需要使用计算器其计算结果与公式计算法的结果是一样的。在实际应用中,针对不复杂的计算建议采用快速计算法。

【例2-2】如果信号经历的增益为0.000125,那么增益是多少dB?

解:本题同样可以通过两种方法进行计算,分别是公式计算法和快速计算法。

公式计算法: 根据式(2-1)可得


快速计算法:已知 Gain = 0.000125 = 1 ÷ 2 ÷ 2 ÷ 2 ÷ 10 ÷ 10 ÷ 10 ;

所以 Gain = 0dB - 3dB - 3dB - 3dB - 10dB - 10dB - 10dB = -39dB 。

如表2-1所示,为常用分贝的值和对应的系数关系,表中的dB转换数值为应用中常见数值,读者应全部掌握。

表2-1 常用分贝值与对应系数

(2)dBm和dBW的概念

那dBm和dBW又是什么单位呢?在前面讲dB的时候我们提到过由于两个信号的能量可能差10亿倍,如果只是简单的用瓦这个单位会非常的不方便,所以在射频应用中一般用dBm来作为功率的单位,定义0dBm=1mW;0dBW=1W,那么:

W和dBm的转换公式为:


W和dBW的转换公式为:


所以:+30 dBm = 0 dBW;- 30 dBW = 0 dBm。

需要说明的一点是在射频工程中最常用的功率单位是dBm,根据式(2-3),常用换算如下。


【例2-3】一个设备的输出功率为33dBm,其输出功率是多少瓦?

解:+33dBm=0dBm  +10dB +10dB  +10dB  +3dB                  
=1mW   ×10   ×10    ×10   ×2  =2W。因此这个设备的输出功率为2W。

【例2-4】一个设备的输出功率为0.00025mW,其输出功率是多少dBm?

解:0.00025mW=1mW  ÷10 ÷10  ÷10  ÷2  ÷2                       
=0dBm  -10  -10  -10  -3   -3=-36dBm。因此这个设备的输出功率为-36dBm。

如表2-2所示常用dBm与功率值和对照表,表中的dBm与功率的转换数值为应用中常见数值,读者应全部掌握。

表2-2  常用dBm与功率值对照表 

3.射频的带宽与容量

3.1 带宽、宽带、窄带介绍

带宽:RF技术中最常用的名词之一,对模拟系统和数字系统定义是完全不同的。首先我们对模拟系统下的带宽进行分析,其单位为Hz,与频率相关。

绝对带宽的定义为:
式中——Δf 为绝对带宽;
fH 为最高频率;
fL 为最低频率。
相对带宽:
其中f0 为中心频率,

‍‍‍如图2-1模拟带宽示例图所示,左边的一条竖线是带宽的低频点=2.407GHz,最右边的一条竖线是带宽的高频点=2.417GHz,中间的一条竖线是中心频率=2.412GHz。从这张图中我们可以认识到模拟带宽就是在频谱上找到和,然后进行计算。

根据式(2-5),其绝对带宽=2.417GHz-2.407GHz=100MHz。

根据式(2-6),其相对带宽=


这里要注意一点:在相对带宽相等的时候,其绝对带宽不一定相等,这个与中心频率相关。

图2-1 模拟带宽示例图
‍‍‍‍
在数字系统中,是以每秒传送的比特(bit)数表示带宽的,其单位为bps(bitsper second)。

宽带与窄带是描述带宽的一种常用的表达方式,对于模拟系统和数字系统的定义不同:

  • 模拟系统:相对带宽>50%为宽带,相对带宽<50%为窄带;
  • 数字系统:速度>1.5Mbps 为宽带,速度<1.5Mbps 为窄带。


3.2 容量与带宽的关系


(1)香农定理

信道的容量就是指整个信道的传输速度能有多快,更加简单的理解就是最快能达到多少bps。要讨论信道容量,我们先了解一个非常关键的定理——香农定理(Shannon law)。
公式为:
‍‍‍‍

‍‍‍
其中C为信道容量(信道最大可以传播的信息量),W为带宽,s/n为信噪比。

这个公式可以理解为,如果一个信道的带宽越宽,其信号越强、噪声越小,这个信道可以获得越大的信道容量。这个公式非常关键,是通信原理中最重要的定理之一,在后续与超高频RFID相关的内容中都会用到。

‍‍‍‍‍‍(2)信道容量

波特率(Baud Rate)这个词大家也经常听到,比如串口设置波特率可以设置为115200和9200等。那波特率到底是怎么一个原理,它与比特率有什么关系呢?

在电子通信领域,波特率即调制速率,指的是信号被调制以后在单位时间内的变化,即单位时间内载波参数变化的次数。它是对符号传输速率的一种度量,单位“波特”(Baud)本身就已经是代表每秒的调制数,以“波特每秒”(Baudper second)为单位是一种常见的错误。

模拟线路信号的速率,以波形每秒的振荡数来衡量。如果数据不压缩,波特率等于每秒钟传输的数据位数;如果数据进行了压缩,那么每秒钟传输的数据位数通常大于调制速率,使得交换使用波特和比特每秒偶尔会产生错误。

在信息传输通道中,携带数据信息的信号单元叫码元。每秒钟通过信道传输的码元数称为码元传输速率,简称波特率。波特率是指数据信号对载波的调制速率,它用单位时间内载波调制状态改变的次数来表示(也就是每秒调制的符号数),其单位是波特(Baud或symbol/s)。波特率是传输通道频宽的指标。如图2-2所示为1波特和2400波特对比示意图。

图2-2 1波特和2400波特对比示意图

每秒钟通过信道传输的信息量称为:位传输速率,也就是每秒钟传送的二进制位数,简称比特率。比特率表示有效数据的传输速率,用b/s 、bit/s、比特/秒,读作:比特每秒。

波特率与比特率的关系:比特率=波特率×单个调制状态对应的二进制位数。

例如,假设数据传送速率为2400符号/秒(symbol/s,也就是波特率为2400Baud),又假设每一个符号为4位(bit),则其传送的比特率为(2400symbol/s)×(4bit/symbol)=9600bps。若提高波特率,仍以4bit/波特(4bit/Hz)传送码元,则速率提高了,信息量增加了;同理如果保持波特率不变,提高每一个符号的传送码元为8bit/波特,则整个系统的信道容量提高了一倍,到19200bps。

讲完上面的例子就会有人问,如果不断增大波特率,是不是可以无限制的提高信道的传输速度?其实不会有这样的事情出现,因为香农定理已经确定了信号的最大传输速率。如香农定理式(2-7)所示,带宽W决定了波特率,信噪比s/n决定每波特可以传播的码元。更加通俗的解释一下,如果带宽小于2400Hz,那么就不可能实现1秒完成2400个周期,也就达不到2400Baud;同理,如果信噪比很差,信号不够强,一个符号Band也没有办法表示4位(误码率会大大提高),这样就无法实现9600bps的速率稳定工作。


本文来源于RFID世界网

- The End

声明:欢迎转发本号原创内容,转载和摘编需经本号授权并标注原作者和信息来源为云脑智库。本公众号目前所载内容为本公众号原创、网络转载或根据非密公开性信息资料编辑整理,相关内容仅供参考及学习交流使用。由于部分文字、图片等来源于互联网,无法核实真实出处,如涉及相关争议,请跟我们联系。我们致力于保护作者知识产权或作品版权,本公众号所载内容的知识产权或作品版权归原作者所有。本公众号拥有对此声明的最终解释权。

投稿/招聘/推广/合作/入群/赞助 请加微信:15881101905,备注关键词

微群关键词:天线、射频微波、雷达通信电子战、芯片半导体、信号处理、软件无线电、测试制造、相控阵、EDA仿真、通导遥、学术前沿、知识服务、合作投资.

“阅读是一种习惯,分享是一种美德,我们是一群专业、有态度的知识传播者.”

 阅读原文加入知识星球,发现更多精彩内容.

   ///  先别走,安排点个“赞”和“在看” ↓  

云脑智库 努力是一种生活态度,与年龄无关!专注搬运、分享、发表雷达、卫通、通信、化合物半导体等技术应用、行业调研、前沿技术探索!专注相控阵、太赫兹、微波光子、光学等前沿技术学习、分享
评论
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 49浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 73浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 390浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 121浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 221浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 111浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 164浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 183浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 41浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 150浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 100浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 182浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦