内存池设计与实现

C语言与CPP编程 2021-10-13 09:50

内存池设计与实现


一、前言

作为C++程序员,想必对于内存操作这一块是比较熟悉和操作比较频繁的;

比如申请一个对象,使用new,申请一块内存使用malloc等等;

但是,往往会有一些困扰烦恼着大家,主要体现在两部分:

  • 申请内存后忘记释放,造成内存泄漏
  • 内存不能循环使用,造成大量内存碎片

这两个原因会影响我们程序长期平稳的运行,也有可能会导致程序的崩溃;


二、内存池

内存池是池化技术中的一种形式。通常我们在编写程序的时候回使用 new delete 这些关键字来向操作系统申请内存,而这样造成的后果就是每次申请内存和释放内存的时候,都需要和操作系统的系统调用打交道,从堆中分配所需的内存。如果这样的操作太过频繁,就会找成大量的内存碎片进而降低内存的分配性能,甚至出现内存分配失败的情况。

而内存池就是为了解决这个问题而产生的一种技术。从内存分配的概念上看,内存申请无非就是向内存分配方索要一个指针,当向操作系统申请内存时,操作系统需要进行复杂的内存管理调度之后,才能正确的分配出一个相应的指针。而这个分配的过程中,我们还面临着分配失败的风险。

所以,每一次进行内存分配,就会消耗一次分配内存的时间,设这个时间为 T,那么进行 n 次分配总共消耗的时间就是 nT;如果我们一开始就确定好我们可能需要多少内存,那么在最初的时候就分配好这样的一块内存区域,当我们需要内存的时候,直接从这块已经分配好的内存中使用即可,那么总共需要的分配时间仅仅只有 T。当 n 越大时,节约的时间就越多。

---引用来源互联网


三、内存池设计

内存池设计实现中主要分为以下几部分:

  • 重载new
  • 创建内存节点
  • 创建内存池
  • 管理内存池

下面,比较详细的来说说设计细节:

重载new就不说了,直接从内存节点开始;

内存池节点

内存池节点需要包含以下几点元素:

  1. 所属池子(pMem),因为后续在内存池管理中可以直接调用申请内存和释放内存

  2. 下一个节点(pNext),这里主要是使用链表的思路,将所有的内存块关联起来;

  3. 节点是否被使用(bUsed),这里保证每次使用前,该节点是没有被使用的;

  4. 是否属于内存池(bBelong),主要是一般内存池维护的空间都不是特别大,但是用户申请了特别大的内存时,就走正常的申请流程,释放时也就正常释放;

内存池设计

内存池设计就是上面的图片类似,主要包含以下几点元素:

  1. 内存首地址(_pBuffer),也就是第一块内存,这样以后方面寻找后面的内存块;
  2. 内存块头(_pHeader),也就是上面说的内存池节点;
  3. 内存块大小(_nSize),也就是每个节点多大;
  4. 节点数(_nBlock),及时有多少个节点;

这里面需要的注意的是,申请内存块的时候,需要加上节点头,但是申请完后返回给客户使用的需要去掉头;但是释放的时候,需要前移到头,不然就会出现异常;

释放内存:

释放内存的时候,将使用过的内存置为false,然后指向头部,将头部作为下一个节点,这样的话,节点每次回收就可以相应的被找到;

内存池管理

内存池创建后,会根据节点大小和个数创建相应的内存池;

内存池管理主要就是根据不同的需求创建不同的内存池,以达到管理的目的;

这里主要有一个概念:数组映射

数组映射就是不同的范围内,选择不同的内存池;

添一段代码:

 void InitArray(int nBegin,int nEnd, MemoryPool*pMemPool)
 
{
  for (int i = nBegin; i <= nEnd; i++)
  {
   _Alloc[i] = pMemPool;
  }
 }

根据范围进行绑定;


四、内存池实现

ManagerPool.hpp

#ifndef _MEMORYPOOL_HPP_
#define _MEMORYPOOL_HPP_

#include <iostream>
#include <mutex>

////一个内存块的最大内存大小,可以扩展
#define MAX_MEMORY_SIZE 256

class MemoryPool;

//内存块
struct MemoryBlock
{

 MemoryBlock* pNext;//下一块内存块
 bool bUsed;//是否使用
 bool bBelong;//是否属于内存池
 MemoryPool* pMem;//属于哪个池子
};

class MemoryPool
{

public:
 MemoryPool(size_t nSize=128,size_t nBlock=10)
 {
  //相当于申请10块内存,每块内存是1024
  _nSize = nSize;
  _nBlock = nBlock;
  _pHeader = NULL;
  _pBuffer = NULL;
 }
 virtual ~MemoryPool()
 {
  if (_pBuffer != NULL)
  {
   free(_pBuffer);
  }
 }
 //申请内存
 voidAllocMemory(size_t nSize)
 
{
  std::lock_guard<std::mutex> lock(_mutex);
  //如果首地址为空,说明没有申请空间
  if (_pBuffer == NULL)
  {
   InitMemory();
  }
  MemoryBlock* pRes = NULL;
  //如果内存池不够用时,需要重新申请内存
  if (_pHeader == NULL)
  {
   pRes = (MemoryBlock*)malloc(nSize+sizeof(MemoryBlock));
   pRes->bBelong = false;
   pRes->bUsed = false;
   pRes->pNext = NULL;
   pRes->pMem = NULL;
  }
  else
  {
   pRes = _pHeader;
   _pHeader = _pHeader->pNext;
   pRes->bUsed = true;
  }
  //返回只返回头后面的信息
  return ((char*)pRes + sizeof(MemoryBlock));
 }

 //释放内存
 void FreeMemory(void* p)
 
{
  std::lock_guard<std::mutex> lock(_mutex);
  //和申请内存刚好相反,这里需要包含头,然后全部释放
  MemoryBlock* pBlock = ((MemoryBlock*)p - sizeof(MemoryBlock));
  if (pBlock->bBelong)
  {
   pBlock->bUsed = false;
   //循环链起来
   pBlock->pNext = _pHeader;
   pBlock = _pHeader;
  }
  else
  {
   //不属于内存池直接释放就可以
   free(pBlock);
  }
 }
 //初始化内存块
 void InitMemory()
 
{
  if (_pBuffer)
   return;
  //计算每块的大小
  size_t PoolSize = _nSize + sizeof(MemoryBlock);
  //计算需要申请多少内存
  size_t BuffSize = PoolSize * _nBlock;
  _pBuffer = (char*)malloc(BuffSize);
  //初始化头
  _pHeader = (MemoryBlock*)_pBuffer;
  _pHeader->bUsed = false;
  _pHeader->bBelong = true;
  _pHeader->pMem = this;
  //初始化_nBlock块,并且用链表的形式连接
  //保存头指针
  MemoryBlock* tmp1 = _pHeader;
  for (size_t i = 1; i < _nBlock; i++)
  {
   MemoryBlock* tmp2 = (MemoryBlock*)(_pBuffer + i*PoolSize);
   tmp2->bUsed = false;
   tmp2->pNext = NULL;
   tmp2->bBelong = true;
   _pHeader->pMem = this;
   tmp1->pNext = tmp2;
   tmp1 = tmp2;
  }
 }
public:
 //内存首地址(第一块内存的地址)
 char* _pBuffer;
 //内存块头
 MemoryBlock* _pHeader;
 //内存块大小
 size_t _nSize;
 //多少块
 size_t _nBlock;

 std::mutex _mutex;
};

//可以使用模板传递参数
template<size_t nSize,size_t nBlock>
class MemoryPoolor:public MemoryPool
{
public:
 MemoryPoolor()
 {
  _nSize = nSize;
  _nBlock = nBlock;
 }

};

//需要重新对内存池就行管理
class ManagerPool
{

public:
 static ManagerPool& Instance()
 
{
  static ManagerPool memPool;
  return memPool;
 }

 voidAllocMemory(size_t nSize)
 
{
  if (nSize < MAX_MEMORY_SIZE)
  {
   return _Alloc[nSize]->AllocMemory(nSize);
  }
  else
  {
   MemoryBlock* pRes = (MemoryBlock*)malloc(nSize + sizeof(MemoryBlock));
   pRes->bBelong = false;
   pRes->bUsed = true;
   pRes->pMem = NULL;
   pRes->pNext = NULL;
   return ((char*)pRes + sizeof(MemoryBlock));
  }
 }

 //释放内存
 void FreeMemory(void* p)
 
{
  MemoryBlock* pBlock = (MemoryBlock*)((char*)p - sizeof(MemoryBlock));
  //释放内存池
  if (pBlock->bBelong)
  {
   pBlock->pMem->FreeMemory(p);
  }
  else
  {
   free(pBlock);
  }
 }

private:
 ManagerPool()
 {
  InitArray(0,128, &_memory128);
  InitArray(129256, &_memory256);
 }

 ~ManagerPool()
 {
 }

 void InitArray(int nBegin,int nEnd, MemoryPool*pMemPool)
 
{
  for (int i = nBegin; i <= nEnd; i++)
  {
   _Alloc[i] = pMemPool;
  }
 }
 //可以根据不同内存块进行分配
 MemoryPoolor<1281000> _memory128;
 MemoryPoolor<2561000> _memory256;
 //映射数组
 MemoryPool* _Alloc[MAX_MEMORY_SIZE + 1];
};
#endif

OperatorMem.hpp

#ifndef _OPERATEMEM_HPP_
#define _OPERATEMEM_HPP_

#include <iostream>
#include <stdlib.h>
#include "MemoryPool.hpp"


voidoperator new(size_t nSize)
{
 return ManagerPool::Instance().AllocMemory(nSize);
}

void operator delete(void* p)
{
 return ManagerPool::Instance().FreeMemory(p);
}

voidoperator new[](size_t nSize)
{
 return ManagerPool::Instance().AllocMemory(nSize);
}

void operator delete[](void* p)
{
 return ManagerPool::Instance().FreeMemory(p);
}

#endif

mian.cpp

#include "OperateMem.hpp"

using namespace std;

int main()
{
 char* p = new char[128];
 delete[] p;
 return 0;
}
C语言与CPP编程 C语言/C++开发,C语言/C++基础知识,C语言/C++学习路线,C语言/C++进阶,数据结构;算法;python;计算机基础等
评论
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 84浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 169浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 121浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 75浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 51浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 13浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 71浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 91浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 100浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 102浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 89浏览
  • 光耦合器,也称为光隔离器,是一种利用光在两个隔离电路之间传输电信号的组件。在医疗领域,确保患者安全和设备可靠性至关重要。在众多有助于医疗设备安全性和效率的组件中,光耦合器起着至关重要的作用。这些紧凑型设备经常被忽视,但对于隔离高压和防止敏感医疗设备中的电气危害却是必不可少的。本文深入探讨了光耦合器的功能、其在医疗应用中的重要性以及其实际使用示例。什么是光耦合器?它通常由以下部分组成:LED(发光二极管):将电信号转换为光。光电探测器(例如光电晶体管):检测光并将其转换回电信号。这种布置确保输入和
    腾恩科技-彭工 2025-01-03 16:27 173浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦