快速读懂单片机时序图,方法在这里!

嵌入式ARM 2019-10-15 07:51



我们都知道在学校是通过铃声来控制所有班级的上下课时间,那个单片机是通过什么样的办法进行取指令,执行指令和其它操作的呢?在这里引入了一个时序的概念:

一、时钟电路

单片机时钟电路有三种方式:

1、单片机内部有一个用于构成振荡器的高增益反相放大器,引脚XTAL1和XTAL2分别是此放大器的输入端和输出端,XTAL1和XTAL2需外接上晶体和合适的电容。
  

2、有的单片机内部也自带时钟电路,用于产生时钟信号。

3、单片机管脚XTAL2直接接晶振。


二、周期

1、时钟周期

时钟电路产生时钟信号的周期我们叫时钟周期(振荡周期)。

单片机通电后就产生了固定标称值的脉冲信号,单片机就是在脉冲信号的驱动下顺序地从ROM中(程序存储器)取出指令一条一条的顺序执行,然后进行一系列的微操作控制,来完成各种指定的动作。


2、机器周期

单片机每访问一次存储器的时间我们把它称为一个机器周期,它是一个时间基准就象我们日常生活中使用的秒一样。
单片机中一个机器周期包括12个振荡周期。振荡周期就是振荡源的周期也就是我们使用的晶振的时间周期。一个12M的晶振它的时间周期是1/12微秒,那么使用12M晶振的单片机它的一个机器周期就应该等于12*1/12微秒,也就是1微秒。


3、指令周期

单片机中有些指令只要一个机器周期而有些指令则需要两个或三个机器周期另外还有两条指令需要4个机器周期。
如何衡量指令执行时间的长短我们就要用到一个新的概念:指令周期,即执行一条指令所需的机器周期。


三、时序


对于芯片开发使用来说,时序图是较为核心也较为重要的一个知识点。在厂家给出的芯片数据手册中,时序图也是非常重要的参数细节。开发者拿到一款芯片时,首先需要做的就是阅读其数据手册,对上面的内容进行提取和掌握。因此能够顺利的阅读并了解到单片机时序图想要传达的意思是非常关键的。


单片机时序是指单片机执行指令时应发出的控制信号的时间序列。这些控制信号在时间上的相互关系就是CPU的时序。它是一系列具有时间顺序的脉冲信号。

CPU发出的时序有两类:一类用于片内各功能部件的控制,它们是芯片设计师关注的问题,对用户没有什么意义。另一类用于片外存储器或I/O端口的控制,需要通过器件的控制引脚送到片外,这部分时序对分析硬件电路的原理至关重要,也是软件编程遵循的原则,需要认真掌握。

CPU发出的时序有两类:一类用于片内各功能部件的控制,它们是芯片设计师关注的问题,对用户没有什么意义。另一类用于单片机外部芯片的控制,这部分时序对分析硬件电路的原理至关重要,也是软件编程遵循的原则。


操作时序永远使用是任何一片IC芯片的最主要的内容。一个芯片的所有使用细节都会在它的官方器件手册上包含。所以使用一个器件事情,要充分做好的第一件事就是要把它的器件手册上有用的内容提取,掌握其工作时序。


在这里我们以液晶1602为例,分析其操作时序。其基本时序有读状态,写指令,读数据和写数据。


为了方便大家理解,这里以1602为例进行讲解,1602的引脚是很整齐的SIP单列直插封装,所以器件手册只给出了引脚的功能数据表:



这里,我们需要关注1602的几个管脚,分别是RS,RW,E,D0...D7。由上面的说明我们可以知道:

RS:数据/命令(状态)选择端,当此脚为高电平时,可以对1602进行数据字节的传输操作,而此脚为低电平时,进行命令(状态)字节的传输操作。


RW:读写选择端,当此脚为高电平可对LCD1602进行读数据操作,反之进行写数据操作。

E:使能信号,其实是LCD1602的数据控制时钟信号,利用该信号的上升沿实现对LCD1602的数据传输。

D0...D7:8位并行数据口。


在此,我们分析两个写时序:写命令和写数据。


1、当我们要写指令字,设置LCD1602的工作方式时:需要把RS置为低电平,RW置为低电平,然后将数据送到数据口D0~D7,最后E引脚一个高脉冲将数据写入。


void WriteCommandLCD(unsigned char WCLCD,BuysC) //BuysC为0时忽略忙检测   {if (BuysC) ReadStatusLCD();      //根据需要检测忙  LCD_Data = WCLCD;            //将要写的命令放在数据线上LCD_RS = 0;               //RS为低表明要写的为命令         LCD_RW = 0;               //RS为低表明执行的是写操作LCD_E = 0;                           LCD_E = 0;LCD_E = 1;               //以上三条语句引入一个高脉冲}

2、当我们要写入数据字,在1602上实现显示时:需要把RS置为高电平,RW置为低电平,然后将数据送到数据口D0~D7,最后E引脚一个高脉冲将数据写入。


void WriteDataLCD(unsigned char WDLCD){ReadStatusLCD();             //检测忙LCD_Data = WDLCD;           //将要写的命令放在数据线上LCD_RS = 1;              //RS为高表明要写的为数据  LCD_RW = 0;              //RS为低表明执行的是写操作LCD_E = 0;                              LCD_E = 0;                                             LCD_E = 1;               //以上三条语句引入一个高脉冲}




开发者只需要关注以下几个管脚:


3脚:VL,液晶显示偏压信号,用于调整LCD1602的显示对比度,一般会外接电位器用以调整偏压信号,注意此脚电压为0时可以得到最强的对比度。


4脚:RS,数据/命令选择端,当此脚为高电平时,可以对1602进行数据字节的传输操作,而此脚为低电平时,则是进行命令字节的传输操作。命令字节,即是用来对LCD1602的一些工作方式作设置的字节;数据字节,即使用以在1602上显示的字节。值得一提的是,LCD1602的数据是8位的。


5脚:R/W,读写选择端。当此脚为高电平可对LCD1602进行读数据操作,反之进行写数据操作。笔者认为,此脚其实用处不大,直接接地永久置为低电平也不会影响其正常工作。但是尚未经过复杂系统验证,保留此意见。


6脚:E,使能信号,其实是LCD1602的数据控制时钟信号,利用该信号的上升沿实现对LCD1602的数据传输。


7~14脚:8位并行数据口,使得对LCD1602的数据读写大为方便。


LCD1602的操作时序


在此,可以先不读出它的数据的状态或者数据本身,所以只需要看两个写时序:


①当要写指令字,设置LCD1602的工作方式时:需要把RS置为低电平,RW置为低电平,然后将数据送到数据口D0~D7,最后E引脚一个高脉冲将数据写入。


②当要写入数据字,在1602上实现显示时:需要把RS置为高电平,RW置为低电平,然后将数据送到数据口D0~D7,最后E引脚一个高脉冲将数据写入。


实际上写指令和写数据,差别仅仅在于RS的电平不一样而已。以下是LCD1602的时序图:




只要慢慢学会看时序图,要知道操作一个器件的精华便蕴藏在其中,看懂看准了时序,再操控这个芯片就是非常容易的事了。这里使用1602作为例子主要是因为1602的时序是目前最简单的时序之一。

看时序图需要注意的问题:
1、注意时间轴,从左往右的方向为时间正向轴,即时间在增长。


2、时序图最左边一般是某一根引脚的标识,表示此行图线体现该引脚的变化,上图分别标明了RS、R/W、E、DB0~DB7四类引脚的时序变化。


3、有线交叉状的部分,表示电平在变化。


4、两条平行线分别对应高低电平,如上图右上角所示。


5、密封的菱形部分,表示数据有效,Valid Data这个词也显示了这点。


6、时序图里各个引脚的电平变化,基于的时间轴是一致的。一定要严格按照时间轴的增长方向来精确地观察时序图。要让器件严格的遵守时序图的变化。


7、时间的标注,也是个十分重要的信息,这些时间的标注表明了某些状态所要维持的最短或最长时间。因为器件的工作速度也是有限的,一般都跟不上主控芯片的速度,所以它们直接之间要有时序配合。下面是时序参数表:

需要十分严重注意的是,时序图里各个引脚的电平变化,基于的时间轴是一致的,一定要严格按照时间轴的增长方向来精确地观察时序图,要让器件严格的遵守时序图的变化,在类似于18B20这样的单总线器件对此要求尤为严格。


时间标注

细心的朋友或许注意到了文中关于时间的标注,这也是个十分重要的信息,这些时间的标注表明了某些状态所要维持的最短或最长时间。因为器件的工作速度也是有限的,一般都跟不上主控芯片的速度,所以它们直接之间要有时序配合。下面是时序参数表:



开发者要注意估计主控芯片的指令时间,可以在官方数据手册上查到MCU的一些级别参数。比如现在用AVRM16做为主控芯片,外部12MHz晶振,(1/12MHz)s是振荡周期,而不是时钟周期,因为时钟周期(状态周期)等于两个振荡周期,换句话说就是对振动频率进行“二分频”的振荡信号,所以(2/12MHz)s才是晶振为12MHz时的时钟周期。


以上给的时间参数全部是ns级别的,所以即便在程序里不加延时程序,也应该可以很好的配合LCD1602的时序要求了。怎么看这个表呢?很简单,在时序图里可以找到TR1,对应时序参数表,可以查到这个是E上升沿/下降沿时间,最大值为25ns,表示E引脚上的电平变化,必须在最大为25ns之内的时间完成。


以上介绍的这些内容,虽然是以LCD1602为例,但这仅仅是为了帮助大家进行理解,其中提到的参数是大部分单片机都会有的,因此大家可以通过本文中给予的解读方式来套用到其他单片机当中,大部分的单片机时序图都会遵循文中给出的规则,当大家渐渐掌握其中的内容后,就可以发现其实看懂单片机的时序图其实并不难。

现在我来解读我对这个时序图的理解:

当要写命令字节的时候,时间由左往右,RS变为低电平,R/W变为低电平,注意看是RS的状态先变化完成。
然后这时,DB0~DB7上数据进入有效阶段,接着E引脚有一个整脉冲的跳变,接着要维持时间最小值为tpw=400ns的E脉冲宽度。然后E引脚负跳变,RS电平变化,R/W电平变化。这样便是一个完整的LCD1602写命令的时序。


ps感谢热心网友的指出错误之处:

(1/12MHz)s是振荡周期,而不是时钟周期,因为时钟周期(状态周期)等于两个振荡周期,换句话说就是对振动频率进行“二分频”的振荡信号,所以(2/12MHz)s才是晶振为12MHz时的时钟周期。

-END-


免责声明:整理文章为传播相关技术,版权归原作者所有,如有侵权,请联系删除
嵌入式ARM 关注这个时代最火的嵌入式ARM,你想知道的都在这里。
评论 (0)
  • 瑞芯微电子(Rockchip)是国内领先的AIoT SoC设计制造企业,专注于智能应用处理器及周边配套芯片的研发。飞凌嵌入式作为瑞芯微的战略合作伙伴,已基于瑞芯微RK3399、RK3568、RK3588、RK3576、RK3562和RK3506系列处理器推出了多款嵌入式主控产品,包括核心板、开发板和工控机,这些产品已成功帮助数千家企业客户完成了项目的快速开发和落地。本文将系统地梳理飞凌嵌入式RK平台主控产品在开发过程中常用的命令,助力更多开发者快速掌握RK系列芯片的开发方法。01、查看CPU温度
    飞凌嵌入式 2025-04-16 15:50 206浏览
  • 4月15日,京东全球购迎来十周年生日。为了回馈广大用户十年来的支持与信赖,早在4月初,京东全球购就已率先开启十周年庆典活动,为消费者带来了一场消费盛宴。来自全球各地的进口好物,以全场进口大牌1元抢、爆品低至5折、跨店每满200减30的优惠价格被呈现在消费者面前。同时,在迎来十周年庆典之际,京东全球购还宣布,未来一年,将投入亿级资源,升级四大商家扶持举措,包括提供仓配和流量等多项补贴,推出扶持新品、新商家等举措,助力更多进口商家降本提效,在京东获得可持续、高质量成长。十年如一日 打造跨境购物首选平
    华尔街科技眼 2025-04-16 16:18 148浏览
  • 一、芯片的发展历程总结:1、晶体管的诞生(1)电子管时代 20世纪40年代,电子管体积庞大、功耗高、可靠性差,无法满足计算机小型化需求。(2)晶体管时代 1947年,贝尔实验室的肖克利、巴丁和布拉顿发明点接触晶体管,实现电子信号放大与开关功能,标志着固态电子时代的开端。 1956年,肖克利发明晶体管。(3)硅基晶体管时代 早期晶体管采用锗材料,但硅更耐高温、成本低,成为主流材料。2、集成电路的诞生与发展 1958年,德州仪器工程师基尔比用锗材料制成世界上第一块含多个晶体管的集成电路,同年仙童半导
    碧海长空 2025-04-15 09:30 232浏览
  • 一、引言:智能化趋势下的学爬玩具开发挑战随着早教理念的普及,学爬玩具作为婴幼儿早期运动能力开发的重要工具,市场需求持续增长。然而,传统学爬玩具开发面临多重挑战:需集成红外遥控、语音交互、电机控制等多模块,开发周期长、硬件成本高;复杂的红外编解码与语音功能实现依赖工程师深度参与,技术门槛陡增。如何以更低成本、更快速度打造差异化产品,成为行业亟待解决的痛点。二、传统开发模式痛点分析硬件冗余红外接收模块、语音芯片、主控MCU分立设计,导致PCB面积增加,BOM成本攀升。开发周期长需工程师独立完成红外协
    广州唯创电子 2025-04-16 08:40 179浏览
  • 2025年4月13日(中国武汉)——在全球经济分化与地缘政治不确定性加剧的背景下,科技与金融的深度融合已成为推动创新与繁荣的关键动力。为实现科技创新、产业进步和金融发展有机结合,发挥金融对科技创新和产业进步的支持作用,国际金融论坛(IFF)科技金融委员会启动大会暨首届科技金融圆桌会议于4月13日在湖北省武汉市武汉产业创新发展研究院成功举行。同时,IFF科技金融委员会由国际金融论坛IFF与武创院联合成立。本次大会汇聚了来自政府、产业与学术研究机构及金融等多领域的精英,共同探讨科技金融如何更好地服务
    华尔街科技眼 2025-04-15 20:53 115浏览
  • 近日,全球6G技术与产业生态大会(简称“全球6G技术大会”)在南京召开。紫光展锐应邀出席“空天地一体化与数字低空”平行论坛,并从6G通信、感知、定位等多方面分享了紫光展锐在6G前沿科技领域的创新理念及在空天地一体化技术方面的研发探索情况。全球6G技术大会是6G领域覆盖广泛、内容全面的国际会议。今年大会以“共筑创新 同享未来”为主题,聚焦6G愿景与关键技术、安全可信、绿色可持续发展等前沿主题,汇聚国内外24家企业、百余名国际知名高校与科研代表共同商讨如何推动全行业6G标准共识形成。6G迈入关键期,
    紫光展锐 2025-04-17 18:55 87浏览
  • 多极电磁铁的核心应用领域一、工业制造领域1.‌磁性材料处理‌:用于多极磁环充磁,通过四极、六极或八极磁场设计,使磁环获得均匀或梯度分布的磁性能,提升电机、传感器等设备的效率‌。在电子束焊接中控制电子束的聚焦和偏转,增强焊接精度(如精密电子元件加工)‌。2.‌机械控制与自动化‌应用于旋转磁场导向系统,优化工业机器人、自动化产线中磁性物料的传输路径。配合电磁吸盘用于起重设备,实现对金属部件的快速吸附与释放,提高搬运效率。二、科研实验领域1.‌物理与材料研究‌在实验室中生成径向梯度磁场或均匀磁场,用于
    锦正茂科技 2025-04-16 09:39 110浏览
  • 四、芯片封测技术及应用场景1、封装技术的发展历程 (1)DIP封装:早期分立元件封装,体积大、引脚少; (2)QFP封装:引脚密度提升,适用于早期集成电路。 (3)BGA封装:高密度互连,散热与信号传输优化; (4)3D封装:通过TSV(硅通孔)实现垂直堆叠,提升集成度(如HBM内存堆叠); (5)Chiplet封装:异质集成,将不同工艺节点的模块组合(如AMD的Zen3+架构)。 (6)SiP封装:集成多种功能芯片(如iPhone的A系列SoC整合CPU、GPU、射频模块)。2、芯片测试 (1
    碧海长空 2025-04-15 11:45 360浏览
  •   网络链路攻防战术对抗仿真系统软件深度剖析   一、系统概览   北京华盛恒辉网络链路攻防战术对抗仿真系统软件,是专为网络安全领域攻防对抗需求打造的高仿真平台。它模拟真实网络环境中的攻、防行为,为安全研究人员以及红队、蓝队提供实战训练和策略验证工具。该系统以动态仿真技术为核心,融合人工智能与大数据分析,实现攻防战术的自动推演与可视化展示 。   应用案例   目前,已有多个网络链路攻防战术对抗仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润网络链路攻防战术对抗仿
    华盛恒辉l58ll334744 2025-04-16 14:42 116浏览
  •   水下装备体系论证系统软件全面解析   一、系统概述   水下装备体系论证系统软件是针对水下作战、资源勘探、海洋工程等需求,专门设计的信息化论证工具。该系统通过集成建模、仿真、优化等技术,对水下装备体系的使命任务、环境适应性、技术参数、作战效能等进行全流程分析,为装备体系设计、方案权衡和决策提供科学依据。   应用案例   目前,已有多个水下装备体系论证系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润水下装备体系论证系统。这些成功案例为水下装备体系论证系统的推广和应用提
    华盛恒辉l58ll334744 2025-04-16 17:03 195浏览
  • 二、芯片的设计1、芯片设计的基本流程 (1)需求定义: 明确芯片功能(如处理器、存储、通信)、性能指标(速度、功耗、面积)及目标应用场景(消费电子、汽车、工业)。 (2)架构设计: 确定芯片整体框架,包括核心模块(如CPU、GPU、存储单元)的协同方式和数据流路径。 (3)逻辑设计: 通过硬件描述语言(如Verilog、VHDL)将架构转化为电路逻辑,生成RTL(寄存器传输级)代码。 (4)物理设计: 将逻辑代码映射到物理布局,涉及布局布线、时序优化、功耗分析等,需借助EDA工具(如Ca
    碧海长空 2025-04-15 11:30 269浏览
  • 在这个AI技术日新月异的时代,人工智能(AI)已经逐渐渗透到我们生活的方方面面,从工作到学习,从娱乐到医疗,AI都在以其独特的方式改变着我们的世界。作为一名计算机专业的大学老师,我近期有幸阅读了《AI帮你赢:人人都能用的AI方法论》一书,深感这本书不仅为专业人士提供了宝贵的AI使用技巧,更为广大学生打开了一扇通往AI世界的大门。 《AI帮你赢》一书于2024年12月正式出版,也是紧跟时代发展的一本书,最新的日期。这本书以通俗易懂的语言,系统地阐述了人工智能的核心理念、应用场景及实践方法
    curton 2025-04-16 21:47 147浏览
  • 一、引言:健康管理数字化浪潮下的血压监测转型在慢性病高发与老龄化加剧的双重压力下,家庭健康监测设备正从“被动测量工具”向“主动健康管家”演进。传统血压计虽能提供基础数值,却无法解决用户的核心痛点:数据如何解读?异常如何干预?风险如何预防?WT2605C芯片方案的诞生,通过“AI对话+云端互联+个性化服务”三重技术突破,重新定义了血压计的价值边界——它不仅是一台测量仪器,更是一个全天候在线的健康管理生态系统。二、传统血压计的局限与用户需求升级1. 功能单一性困境数据孤岛:仅显示收缩压/舒张压数值,
    广州唯创电子 2025-04-16 08:55 197浏览
  • 三、芯片的制造1、制造核心流程 (1)晶圆制备:以高纯度硅为基底,通过拉晶、切片、抛光制成晶圆。 (2)光刻:光刻、离子注入、薄膜沉积、化学机械抛光。 (3)刻蚀与沉积:使用干法刻蚀(等离子体)精准切割图形,避免侧壁损伤。 (4)掺杂:注入离子形成PN结特性,实现晶体管开关功能。2、材料与工艺创新 (1)新材料应用: 高迁移率材料(FinFET中的应变硅、GaN在射频芯片中的应用); 新型封装技术(3D IC、TSV硅通孔)提升集成度。 (2)工艺创新: 制程从7nm到3nm,设计架构由F
    碧海长空 2025-04-15 11:33 313浏览
我要评论
0
20
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦