NVMe技术基础知识

云脑智库 2021-10-07 00:00


来源 | 架构师技术联盟

智库 | 云脑智库(CloudBrain-TT)

云圈 | “云脑智库微信群”,请加微信:15881101905,备注您的研究方向



内容提要:NVM Express(NVMe),或称非易失性内存主机控制器接口规范(英语:Non Volatile Memory Host Controller Interface Specification,缩写:NVMHCIS),是一个逻辑设备接口规范。它是与AHCI类似的、基于设备逻辑接口的总线传输协议规范(相当于通讯协议中的应用层),用于访问通过PCI Express(PCIe)总线附加的非易失性存储器介质(例如采用闪存的固态硬盘驱动器),虽然理论上不一定要求 PCIe 总线协议。


1. 综述

NVMe over PCIe协议,定义了NVMe协议的使用范围、指令集、寄存器配置规范等。

1.1 名词解释


1.1.1 Namespace

Namespace是一定数量逻辑块(LB)的集合,属性在Identify Controller中的数据结构中定义。

1.1.2 Fused Operations

Fused Operations可以理解为聚合操作,只能聚合两条命令,并且这两条命令在队列中应保持相邻顺序。协议中只有NVM指令才有聚合操作。还需要保证聚合操作的两条命令读写的原子性,参考Compare and Write例子。

1.1.3 指令执行顺序

除了聚合操作(Fused Operations),每一条SQ中的命令都是独立的,不必考虑RAW等数据相关问题,即使考虑,也是host应该解决的问题。

1.1.4 写单元的原子性

控制器需要支持写单元的原子性。但有时也能通过host配置Write Atomicity feature,减小原子性单元的大小,提高性能。

1.1.5 元数据

数据的额外信息,相当于提供校验功能。可选的方式。

1.1.6 仲裁机制

用来选择下一次执行的命令的SQ的机制,三种仲裁方式:

  • RR(每个队列优先级相同,轮转调度)

  • 带权重的RR(队列有4种优先级,根据优先级调度)

  • 自定义实现

1.1.7 逻辑块(LB)

NVMe定义的最小的读写单元,2KB、4KB……,用LBA来标识块地址,LBA range则表示物理上连续的逻辑块集合。

1.1.8 Queue Pair

由SQ(提交队列)与CQ(完成队列)组成,host通过SQ提交命令,NVMe Controller通过CQ提交完成命令。

1.1.9 NVM 子系统

NVM子系统包括控制器、NVM存储介质以及控制器与NVM之间的接口。

1.2 NVMe SSD

1.2.1基本架构

整体来看,NVMe SSD可以分为三部分,host端的驱动(NVMe官网以及linux、Windows已经集成了相应的驱动)、PCIe+NVMe实现的控制器以及FTL+NAND Flash的存储介质。



1.2.2 NVMe控制器

NVMe控制器实质上为DMA + multi Queue,DMA负责数据搬运(指令+用户数据),多队列负责发挥闪存的并行能力。



2. PCIe寄存器配置

NVMe over PCIe,通过利用PCIe总线实现数据交互的功能,实现对物理层的抽象功能。

2.1 PCIe总线的基本结构

PCIe总线分为三层,物理层,数据链路层,处理层(类似于计算机网络的分层结构),通过包来转发数据。NVMe协议定义的内容相当于PCIe的上一层应用层,处于应用层。PCIe给NVMe提供了底层的抽象。

NVMe SSD相当于一个PCIe的端设备(EP)。



2.2 寄存器配置

在协议中主要定义了PC header、PCI Capabilities和PCI Express Extended Capabilities三部分内容。

具体在host内存中会占有4KB,结构如下:



2.2.1 PCI header

PCI header有两种类型,type0表示设备,type1表示桥。NVMe 控制器属于EP,所以定义为type0的类型。共64KB,如下图:



2.2.2 PCI Capabilities

这里配置了PCI Capbilities,包括电源管理、中断管理(MSI、MSI-X)、PCIe Capbilities。

2.2.3 PCI Express Extended Capabilities

这里配置有关错误恢复等高级功能。

3. NVMe寄存器配置

3.1 寄存器定义

NVMe寄存器主要分为两部分,一部分定义了Controller整体属性,一部分用来存放每组队列的头尾DB寄存器。

  1. CAP——控制器能力,定义了内存页大小的最大最小值、支持的I/O指令集、DB寄存器步长、等待时间界限、仲裁机制、队列是否物理上连续、队列大小;

  2. VS——版本号,定义了控制器实现NVMe协议的版本号;

  3. INTMS——中断掩码,每个bit对应一个中断向量,使用MSI-X中断时,此寄存器无效;

  4. INTMC——中断有效,每个bit对应一个中断向量,使用MSI-X中断时,此寄存器无效;

  5. CC——控制器配置,定义了I/O SQ和CQ队列元素大小、关机状态提醒、仲裁机制、内存页大小、支持的I/O指令集、使能;

  6. CSTS——控制器状态,包括关机状态、控制器致命错误、就绪状态;

  7. AQA——Admin 队列属性,包括SQ大小和CQ大小;

  8. ASQ——Admin SQ基地址;

  9. ACQ——Admin CQ基地址;

  10. 1000h之后的寄存器定义了队列的头、尾DB寄存器。

3.2 寄存器理解

  1. CAP寄存器标识的是Controller具有多少能力,而CC寄存器则是指当前Controller选择了哪些能力,可以理解为CC是CAP的一个子集;如果重启(reset)的话,可以更换CC配置;

  2. CC.EN置一,表示Controller已经可以开始处理NVM命令,从1到0表示Controller重启;

  3. CC.EN与CSTS.RDY关系密切,CSTS.RDY总是在CC.EN之后由Controller改变,其他不符合执行顺序的操作都将产生未定义的行为;

  4. Admin队列有host直接创建,AQA、ASQ、ACQ三个寄存器标识了Admin队列,而其他I/O队列则有Admin命令创建(eg,创建I/O CQ命令);

  5. Admin队列的头、尾DB寄存器标识为0,其他I/O队列标识由host按照一定规则分配;只有16bit的有效位,是因为队列深度最大64K。

4. 内存数据结构

4.1 SQ与CQ的详细定义

4.1.1 空队列



4.1.2 满队列

判断队列满可以有多种方法,协议中规定的是头指针比尾指针大一,所以队列满时,空余一个元素。



4.1.3 队列性质

1. 队列大小有16bit,最小队列大小为2个元素(因为满队列的定义方式,所以最小为2个元素),对于I/O队列,最大队列大小为64k;对于Admin队列,最大队列为4k;

2. QID来标识唯一ID,16bit,由host分配;

3. host可以修改队列优先级(如果支持的话),共四级,U、H、M、L;

4.2 仲裁机制

4.2.1 RR

RR仲裁,Admin SQ与I/O SQ优先级相同,控制器每次可以选择一个队列中的多个命令(Arbitration Burst setting)。



4.2.2 带有优先权的RR

有3个严格的优先权,Priority1 > Priority2 > Priority3,在这三个优先级队列中,高优先级的队列中如果有命令,则优先执行(非抢占式)。



4.2.3 其他仲裁方式

Vendor Specific。

4.3 数据寻址方式(PRP和SGL)

4.3.1 PRP

NVMe把Host的内存分为页的集合,页的大小在CC寄存器中配置,PRP是一个64位的内存物理地址指针,结构如下:



最后两位为0,指四字节对齐;(n:2)位表示页内内偏移。

举个例子,内存页大小位4KB,则(11:2)表示页内偏移。

PRP寻址有两种方式,直接用PRP指针寻址,通过PRP List寻址。当使用PRP List寻址时,偏移必须为0h,每一个PRP条目表示一个内存页,如下:



Admin命令的数据地址只能采取PRP的方式,I/O命令的数据地址既可以采取PRP的方式,又可以采取SGL的方式。Host在命令中会告诉Controller采用何种方式。具体来说,如果命令当中DW0[15:14]是0,就是PRP的方式,否则就是SGL的方式。

命令的Dword6~Dword9只定义了PRP1、PRP2两个数据指针,通过PRP条目可以指向PRP List。如下图:



在上面的例子中,PRP1直接指向内存页,PRP2指向PRP List存在的地址,在PRP List中存有数据的真正的地址。

更详细的说

协议中PRP Entry是一个指向物理内存页的指针。PRP被用作NVMe Controller和PC内存之间进行数据传输。PRPEntry是固定大小的(8B)。

首先,明确两个概念,PRP Entry 为PRP指针,PRP List为PRP列表指针,示意图如下:


根据每次传输数据的大小,以及PRP指针的偏移(offset)可以分为以下五种情况:

4.3.2 SGL

SGL是另外一种索引内存的数据结构。SGL由若干个SGL段组成,SGL段又由若干个SGL描述符组成,所以SGL描述符是SGL数据结构的基本单位。

目前定义的SGL描述符有6种:

  1. SGL 数据描述符,用来索引数据块地址,host内存;

  2. SGL 垃圾数据描述符,用来索引无用数据;

  3. SGL 段描述符,用来索引下一个SGL段;

  4. SGL 最后一个段描述符,用来索引最后一个SGL段;

  5. keyed SGL 数据描述符;

  6. Transport SGL 数据描述符;


在上面SGL例子中,共有3个SGL段,用到了4种SGL描述符。Host需要往SSD中读取13KB的数据,其中真正只需要11KB数据,这11KB的数据需要放到3个大小不同的内存中,分别是:3KB,4KB和4KB。

4.3.3 比较PRP与SGL

无论是PRP还是SGL,本质都是描述内存中的一段数据空间,这段数据空间在物理上可能连续的,也可能是不连续的。Host在命令中设置好PRP或者SGL,告诉Controller数据源在内存的什么位置,或者从闪存上读取的数据应该放到内存的什么位置。

SGL和PRP本质的区别在于,一段数据空间,对PRP来说,它只能映射到一个个物理页,而对SGL来说,它可以映射到任意大小的连续物理空间,具有更大的灵活性,也能够描述更大的数据空间。如下图:


5. NVMe协议定义的命令

5.0 命令执行过程

命令由host提交到内存中的SQ队列中,更新TDBxSQ后,NVMe控制器通过DMA的方式将SQ中的命令(怎么取,如何取,取多少,因设计而异)取到控制器缓冲区,执行命令;执行完成后,根据执行状态,组装完成命令,仍然通过DMA的方式将完成命令写入内存CQ的队列中;NVMe控制器通过MSI-X中断方式通知host已完成命令;最后,host处理CQ命令,更新控制器中HDBxCQ,标识着命令真正完成。

5.1 命令分类

命令分为Admin指令与NVM指令(I/O指令)。

Admin指令只能提交到Admin Controller中,主要负责管理NVMe控制器,也包含对NVM的一些控制指令。

NVM 指令只能提交到I/O Controller中,主要负责完成数据的传输。

在1.0e版本中,Admin指令有15条(3条与NVM相关),NVM指令有6条;在1.3d版本中,Admin指令有15条(3条与NVM相关),NVM指令有11条。

5.2 命令通用格式

命令均为64字节,具有相同的格式,某些字段根据命令的不同有不同的定义。

Dword0

CID、传输方式、聚合操作、操作码

1

NID(命名空间ID)

2

保留

3

保留

4、5

元数据指针(MPTR)

6-9

数据指针(DPTR)

10-15

根据命令指定

完成命令同样具有相同的格式,某些字段根据命令的不同有不同的定义。

Dword0

根据命令指定

1

保留

2

SQID、SQ头指针

3

状态域、P位、CID


5.3 Admin 指令

Admin指令与NVM指令根据放置的的队列组(Queue Pair)来区分,Admin指令在Admin CQ与SQ里,NVM指令在I/O CQ与SQ里。

通过Dword0中的8位操作码定义不同指令,注意并不是绝对的顺序增加(eg,没有03h)。每一种指令都对应有其完成命令,通过SQID(提交队列ID)+CID(命令ID)唯一标识完成的命令。

操作码

指令

作用

00h

删除I/O SQ,

释放SQ空间

01h

创建 I/O SQ,

保存host分配给SQ的地址、队列优先权、队列大小

02h

获取日志,

返回所选日志页于缓冲区

04h

删除 I/O CQ,

释放CQ空间

05h

创建 I/O CQ,

保存host分配给CQ的地址、中断向量、队列大小等

06h

Identify

返回关于controller与namespace能力和状态的数据结构(2k字节)

08h

撤销,

用来撤销之前完成的指令,best-effort

09h

设置features

根据FID设置相应的features

0Ah

获取 features,

根据FID返回队列数量、仲裁信息等

0Ch

异步事件请求,

Controller向host报告运行信息(error or health)

10h

固件激活,

验证下载的镜像,提交到Firmware Slot(1-7)中

11h

固件镜像下载,

下载固件镜像


Note:

  • Admin队列是通过配置ASQ等寄存器创建的

  • 先创建CQ再创建SQ

5.4 NVM指令

NVMe控制器读写的最小单元是LB,层次图如下:

NVM指令与Admin指令结构完全相同,也是通过Dword0中的8位操作码来定义不同指令。

操作码

指令

作用

00h

Flush

将数据(和元数据)提交到NVM中,所有命令都要执行

01h

Write

将数据(和元数据)写入NVM中

02h

Read

读NVM中的数据(和元数据)

04h

Wirte Uncorrectable

标记无效数据块

05h

Compare

比较从NVM端读出的数据和比较数据缓冲区的数据

09h

Dataset Management

标识一定范围数据的特点,eg,频繁读、频繁写(提升性能)


6 控制器结构

控制器从功能上可以分为三类,I/O、Admin和Discovery。


在实现过程中,Admin 控制器只有一个,负责管理控制器及其他控制功能。控制器只是抽象的概念,应用于具体的实现中,可能是一个具体的模块,也可能多个模块。

控制器主要的作用是实现对NVMe定义命令的翻译,从而实现数据传输、状态控制等功能。

6.1 命令执行过程

1. host将命令(1条或者多条)写入提前分配好的SQ中;

2. 更新对应SQ的DB寄存器;

3. NVMe控制器取SQ中命令(通过HDB和TDB可以判断是否有未完成命令);

4. NVMe控制器执行命令;

5. NVMe 控制器在命令完成后,将完成命令(可能执行成功,也可能失败,但都会返回完成命令)写入host内存SQ对应的CQ中;

6. NVMe 控制器根据实现的中断方式,提醒host命令已完成;

7. host响应中断,处理完成命令;

8. host 更新对应CQ的DB寄存器。



6.2 重启(Reset)

6.2.1 Controller level

Controller重启可能发生在PCIe总线重启、PCI重启、控制器CC.EN从1到0重启。当重启发生时:

  1. 所有的I/O SQ和CQ都被删除;

  2. 所有未完成的指令(Admin和I/O)应该执行撤销操作;

  3. Controller处于idele状态,CSTS.RDY清0;

  4. AQA、ASQ、ACQ不受影响。

重启后,host操作:

  1. 更新寄存器状态;

  2. 将CC.EN置1;

  3. 等待CSTS.RDY置1;

  4. 使用Admin命令配置Controller;

  5. 创建I/O CQ和SQ;

  6. 执行正常的I/O指令。

6.2.2 Queue level

队列水平的重启,即,删除该队列,再重新创建一个新队列。删除队列的时候,host应该保证队列处于idle状态(所有命令均已完成——接收到了完成命令),否则的话,可能会导致CQ接收不到提交命令的完成命令。

6.3 中断

在Controller完成SQ命令后,根据执行状态,将结果组装成完成命令写入CQ中,Controller通过中断机制通知Host处理完成命令。

NVMe协议中支持的中断方式有4种,pin-based、Single MSI、Multi-message MSI和MSI-X,协议推荐采用MSI-X中断方式,能够支持更多的中断向量(2K)。

MSI-X允许每一个CQ发送自己的中断信息(相比于发一条中断信息提醒全部CQ队列有很大的优势)。在产生MSI-X中断信息前,需要检查该中断在相应寄存器种不被屏蔽。

6.4 Controller初始化

Controller的初始化过程:

  1. 设置PCI和PCIe寄存器;

  2. 等待CSTS.RDY变为;

  3. 配置AQA、ASQ、ACQ寄存器;

  4. 配置CC寄存器;

  5. 将CC.EN置1;

  6. 等待CSTS.RDY置1

  7. Host通过Identify命令,确定Controller的数据结构、确定Namespace的数据结构;

  8. Host通过get features(协议中是set features,待研究)获取I/O SQ和CQ信息,然后配置中断机制;

  9. Host分配适当的I/O CQ、SQ队列;

  10. 如果Host希望获取Controller的错误或健康信息,可以添加异步事件请求命令。

Controller 关机

正常关机:

  1. Host停止提交新的I/O命令,但允许未完成的命令继续完成;

  2. Host删除所有I/O SQ,删除所有SQ队列后,所有未完成的命令将被撤销;

  3. Host删除所有I/O CQ;

  4. Host将CC.SHN置01b,表示正常关机;关机程序完成时,将CSTS.SHST置10b。

突然关机:

  1. Host停止提交新的I/O命令;

  2. Host将CC.SHN置10b,表示突然关机;关机程序完成时,将CSTS.SHST置10b

6.5 host端命令实例

6.5.1 创建命令



6.5.2 处理完成命令



6.6 NVMe与PCIe交互实例(分析包结构)

以Host发出read命令为例。

  1. Host准备了一个Read命令给SSD:



分析该包,Host需要从起始LBA 0x20E0448(SLBA)上读取128个DWORD (512字节)的数据,读到哪里去呢?PRP1给出内存地址是0x14ACCB000。这个命令放在编号为3的SQ里 (SQID = 3),CQ编号也是3 (CQID = 3)

  1. Host通过写SQ的Tail DB,通知Controller来取命令:

上图中,上层是NVMe层,下层是PCIe传输层的TLP。Host想往SQ Tail DB中写入的值是5。PCIe是通过一个Memory Write TLP来实现Host写CQ的Tail DB的。该Tail DB寄存器映射在Host的内存地址为F7C11018,由于NVMe 的寄存器映射到了Host内存中,所以可以根据这个地址写入寄存器值。

  1. SSD收到通知,去Host端的SQ中取指。

PCIe是通过发一个Memory Read TLP到Host的SQ中取指的。可以看到,PCIe需要往Host内存中读取16个DWORD的数据(一个NVMe指令大小),

  1. SSD执行读命令,把数据从闪存中读到缓存中,然后把数据传给Host:

SSD是通过Memory write TLP 把Host命令所需的128个DWORD数据写入到Host命令所要求的内存中去。SSD每次写入32个DWORD,一共写了4次。

  1. SSD往Host的CQ中返回状态:

SSD是通过Memory write TLP 把16个字节的命令完成状态信息写入到Host的CQ中。

  1. SSD采用中断的方式告诉Host去处理CQ:

上图使用的是MSI-X中断方式。这种方式将中断信息和正常的数据信息一样,PCIe打包把中断信息告知Host。SSD还是通过Memory Write TLP把中断信息告知Host,这个中断信息长度是1DWORD。

  1. Host处理相应的CQ

  2. Host处理完相应的CQ后,需要更新SSD端的CQ Head DB告知SSD处理

完成:


Host还是通过Memory Write TLP更新SSD端的CQ Head DB。

该过程完整的包流程如下:


7. NVMe features

7.1 固件(Firmware)更新过程

1. 将固件下载到Controller中(使用 Firmware Image Download命令);

2. Host提交Firmware Activate命令(也可以激活之前版本的Controller镜像);

3. Controller reset;

4. reset完成后,Host重新初始化Controller,包括Host重新分配I/O队列,与reset步骤相同。

7.2 元数据(Metadata)传输

元数据的使用并没有强制规定,最经常的使用方法是用做端到端数据的保护信息。有两种传输元数据的方式,一种可以作为LB数据块的一部分,如下图:



另一种可以单独作为一个逻辑块传输,如下图:



7.3 端到端的数据保护

端到端,一端指主机的内存空间,一端指闪存空间(NVM)。数据传输的两个环节如下图:


数据在PCIe上传输的时候,由于信道噪声的存在(说白了就是存在干扰),可能导致数据出错;另外,Controller闪存之间,数据也可能发生错误。采用元数据进行数据的保护是最常用的一种手段。

充当保护数据角色的元数据结构如下:



其中,Guard为16bit的CRC校验码,Application Tag与LBAT相关,Reference Tag将用户数据和地址(LBA)相关联。下图为以512bytes的数据块为例:



那么按照排列组合,共有四种保护情况(1带2带、1不带2不带、1带2不带、1不带2带)。但由于协议中控制保护信息的只有两个字段(1. 是否采用保护 2. PRACT位),只有三种情况,如下图(是以写命令为例,读命令相同):


原文链接:

https://zhuanlan.zhihu.com/p/347599423

作者:Fappy

- The End

声明:欢迎转发本号原创内容,转载和摘编需经本号授权并标注原作者和信息来源为云脑智库。本公众号目前所载内容为本公众号原创、网络转载或根据非密公开性信息资料编辑整理,相关内容仅供参考及学习交流使用。由于部分文字、图片等来源于互联网,无法核实真实出处,如涉及相关争议,请跟我们联系。我们致力于保护作者知识产权或作品版权,本公众号所载内容的知识产权或作品版权归原作者所有。本公众号拥有对此声明的最终解释权。

投稿/招聘/推广/合作/入群/赞助 请加微信:15881101905,备注关键词

微群关键词:天线、射频微波、雷达通信电子战、芯片半导体、信号处理、软件无线电、测试制造、相控阵、EDA仿真、通导遥、学术前沿、知识服务、合作投资.

“阅读是一种习惯,分享是一种美德,我们是一群专业、有态度的知识传播者.”

 阅读原文加入知识星球,发现更多精彩内容.

   ///  先别走,安排点个“赞”和“在看” ↓  

云脑智库 努力是一种生活态度,与年龄无关!专注搬运、分享、发表雷达、卫通、通信、化合物半导体等技术应用、行业调研、前沿技术探索!专注相控阵、太赫兹、微波光子、光学等前沿技术学习、分享
评论
  • 百佳泰特为您整理2025年1月各大Logo的最新规格信息,本月有更新信息的logo有HDMI、Wi-Fi、Bluetooth、DisplayHDR、ClearMR、Intel EVO。HDMI®▶ 2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新规范将支持更高的分辨率和刷新率,并提供更多高质量选项。更快的96Gbps 带宽可满足数据密集型沉浸式和虚拟应用对传输的要求,如 AR/VR/MR、空间现实和光场显示,以及各种商业应用,如大型数字标牌、医疗成像和
    百佳泰测试实验室 2025-01-16 15:41 189浏览
  • 一个易用且轻量化的UI可以大大提高用户的使用效率和满意度——通过快速启动、直观操作和及时反馈,帮助用户快速上手并高效完成任务;轻量化设计则可以减少资源占用,提升启动和运行速度,增强产品竞争力。LVGL(Light and Versatile Graphics Library)是一个免费开源的图形库,专为嵌入式系统设计。它以轻量级、高效和易于使用而著称,支持多种屏幕分辨率和硬件配置,并提供了丰富的GUI组件,能够帮助开发者轻松构建出美观且功能强大的用户界面。近期,飞凌嵌入式为基于NXP i.MX9
    飞凌嵌入式 2025-01-16 13:15 213浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 78浏览
  • 随着智慧科技的快速发展,智能显示器的生态圈应用变得越来越丰富多元,智能显示器不仅仅是传统的显示设备,透过结合人工智能(AI)和语音助理,它还可以成为家庭、办公室和商业环境中的核心互动接口。提供多元且个性化的服务,如智能家居控制、影音串流拨放、实时信息显示等,极大提升了使用体验。此外,智能家居系统的整合能力也不容小觑,透过智能装置之间的无缝连接,形成了强大的多元应用生态圈。企业也利用智能显示器进行会议展示和多方远程合作,大大提高效率和互动性。Smart Display Ecosystem示意图,作
    百佳泰测试实验室 2025-01-16 15:37 194浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 184浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 115浏览
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 295浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 144浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 147浏览
  • 实用性高值得收藏!! (时源芯微)时源专注于EMC整改与服务,配备完整器件 TVS全称Transient Voltage Suppre,亦称TVS管、瞬态抑制二极管等,有单向和双向之分。单向TVS 一般应用于直流供电电路,双向TVS 应用于电压交变的电路。在直流电路的应用中,TVS被并联接入电路中。在电路处于正常运行状态时,TVS会保持截止状态,从而不对电路的正常工作产生任何影响。然而,一旦电路中出现异常的过电压,并且这个电压达到TVS的击穿阈值时,TVS的状态就会
    时源芯微 2025-01-16 14:23 185浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 111浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 49浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 202浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦