开发者分享 | 10行代码轻松在ZYNQ MP上实现图像识别

FPGA开发圈 2021-09-30 12:00

本文来自赛灵思高级产品应用工程师,张超。如今各种机器学习框架的普及使得个人搭建和训练一个机器学习模型越来越容易。然而现实中大量的机器学习模型训练完后需要在边缘端部署,那么我们看看借助Xilinx Vitis-AI工具,如何仅仅使用10行代码,就能在ZYNQ MP器件上部署深度学习模型实现图像分类。



简介


Xilinx Vitis-AI 是用于 Xilinx 硬件平台上的 AI 推理的开发堆栈。它由优化的 IP、工具、库、模型和示例设计组成。


简单来说,它主要包含:


  • AI推理加速器IP,即DPU;

  • 支持将AI模型优化 (Optimizer)、量化 (Quantizer)、最后编译 (Compiler) 成DPU运行指令集的整套工具;

  • 支撑模型运行的运行时库(Vitis-AI runtime, Vitis-AI library);



更多具体介绍请 访问如下链接至官方文档:

https://github.com/Xilinx/Vitis-AI


https://www.xilinx.com/support/documentation/sw_manuals/vitis_ai/1_4/ug1414-vitis-ai.pdf


本案例中,我们将使用 Xilinx Kria KV260开发板(包含ZynqMP器件)为目标运行设备。

本文使用的Vitis-AI 版本为1.4, 使用的platform基于Vitis/Vivado 2020.2。为了方便快速部署,我们直接使用官方发布的Linux系统启动镜像, 并且使用Vitis-AI library为编程接口。



准备工作


开始工作前我们需要先搭建好运行环境,包括设置host端(X86机器)的交叉编译环境,以及 target端(KV260)的启动镜像烧写。


本文的主要目的是阐述 Vitis-AI Library 的使用,故运行环境的搭建不做过多介绍,可以完全参考以下链接中的步骤

 “Step1: Setup cross-compiler” 

 “Step2: Setup the Target” 


https://github.com/Xilinx/Vitis-AI/tree/master/setup/mpsoc/VART


注意因为KV260 的Vitis-AI 1.4 platform基于Vitis/Vivado 2020.2, 配置交叉编译环境使用的脚本为host_cross_compiler_setup_2020.2.sh


因为我们使用官方启动镜像,Step2中标注为“Optional”的步骤我们都可以省略。


当KV260成功启动,我们会在console中看到如下提示符:

root@xilinx-k26-starterkit-2020_2:~#


程序编译


可通过如下方式获得本案例中的代码,


git clone https://github.com/lobster1989/Image-classification-on-edge-with-10-lines-of-code.git


主要用到的文件为classification.cpp和Makefile。另外几个Jpeg文件可用于后续测试输入。

安装准备工作章节中配置好交叉编译环境后,切换到源码目录中直接运行make。make完成后文件夹中会生成执行文件“classification”。


运行演示


KV260 连接好串口,从SD卡启动运行(记得提前把执行文件和测试图片拷贝到SD下),


切换到执行文件和测试图片目录下,运行 ./classification.JPEG


分类结果如下:



图片原图:



代码分析


Vitis-AI包含了两组编程接口:VART (Vitis-AI Runtime) 比较底层,提供更大的自由度;Vitis-AI library属于高层次API,构建于 VART 之上,通过封装许多高效、高质量的神经网络,提供更易于使用的统一接口。


Vitis-AI Library的组成如下图,包含 base libraries, model libraries, library test samples, application demos几个部分:


  • base libraries提供底层接口;


  • model libraries是重要的部分,提供了主流模型(classification, detection, segmentation…) 的调用方法;


  • library test samples和application demos主要提供library的使用示例;



更多Vitis-AI library的细节可参考官方文档,

https://www.xilinx.com/support/documentation/sw_manuals/vitis_ai/1_4/ug1354-xilinx-ai-sdk.pdf


再来看本例子,如何用简单到10行代码实现图片分类:


int main(int argc, char* argv[]) {

    std::string image_name = argv[1];

    auto image = cv::imread(image_name);

    auto network = vitis::ai::Classification::create("resnet50");

    auto result = network->run(image);

    cout << "Classification result:" << endl;

    for (const auto &r : result.scores){

cout << result.lookup(r.index) << ": " << r.score << endl;

    }

}


源文件中除去include部分,只有10行代码,代码中最重要的有两句,第一句调用create方法创建了Classification类的一个实例,第二句调用run方法来运行神经网络获得推理结果。


auto network = vitis::ai::Classification::create("resnet50");

    auto result = network->run(image);


vitis::ai::Classification 是 model libraries 中的一个基础类,其作用是进行图片分类,这个类中包含如下方法:



其中create方法接受一个模型名称作为参数,返回一个Classification类的实例。在安装了Vitis-AI Library的开发板上,已经训练编译好的模型文件放在开发板的/usr/share/vitis_ai_library/models/目录下,Vitis-AI Library会通过传递给create方法的模型名称来调用这些模型文件,比如我们用到的resnet50模型文件位置如下,



如果用户训练并编译好了自己的模型,也可以把自己的模型文件放到对应位置来使用。

run方法接受一个/一组图片作为输入,输出这个/这些图片的分类结果。其工作简单来说就是把模型文件和图片数据传送给DPU, DPU运行并输出推理结果,CPU再读回结果。

再看下添加了注释的代码片段,整个过程实际上非常简单明了。


int main(int argc, char* argv[]) {

    std::string image_name = argv[1];

    auto image = cv::imread(image_name);                                    // 读入图片

    auto network = vitis::ai::Classification::create("resnet50");   // 用resnet50模型创建Classification类实例

    auto result = network->run(image);                                           //运行模型

    cout << "Classification result:" << endl;

    for (const auto &r : result.scores){

cout << result.lookup(r.index) << ": " << r.score << endl; //输出模型运行结果

    }

}


除了Classification基础类, Vitis-AI Library包含了非常多的常用机器学习任务(classification, detection, segmentation…)的基础类。这些类的使用方法基本一致,


  • 首先通过create方法创建基础类的实例,


  • 通过getInputWidth()/getInputHeight()来获取模型需要的图片尺寸,


  • resize图片,


  • 运行run方法来运行网络获得输出。


总结


通过这个例子,我们看到通过Vitis-AI工具,可以大大缩减模型到部署之间的距离。Vitis-AI包含了常用模型的Model-Zoo, 提供简单易用的编程接口,甚至可以让不熟悉机器学习或者FPGA的软件开发者都可以在极短的时间内在FPGA/SoC器件上部署神经网络应用。


2021 赛灵思自适应计算挑战赛




立即报名参加2021赛灵思自适应计算挑战赛即可申请免费的硬件 KV260,

完成项目提交还有机会完成赢取10,000美元大奖!



点击下方图片了解活动详情:


关注我们

FPGA开发圈 这里介绍、交流、有关FPGA开发资料(文档下载,技术解答等),提升FPGA应用能力。
评论 (0)
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 225浏览
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 260浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 191浏览
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 227浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 208浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 259浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 242浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 329浏览
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 184浏览
  • 文/郭楚妤编辑/cc孙聪颖‍越来越多的企业开始蚕食动力电池市场,行业“去宁王化”态势逐渐明显。随着这种趋势的加强,打开新的市场对于宁德时代而言至关重要。“我们不希望被定义为电池的制造者,而是希望把自己称作新能源产业的开拓者。”4月21日,在宁德时代举行的“超级科技日”发布会上,宁德时代掌门人曾毓群如是说。随着宁德时代核心新品骁遥双核电池的发布,其搭载的“电电增程”技术也走进业界视野。除此之外,经过近3年试水,宁德时代在换电业务上重资加码。曾毓群认为换电是一个重资产、高投入、长周期的产业,涉及的利
    华尔街科技眼 2025-04-28 21:55 169浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦