深度讲解DC-DC 升压转换器如何选择电感值

电源Fan 2021-09-30 09:04

升压拓扑结构在功率电子领域非常重要,但是电感值的选择并不总是像通常假设的那样简单。在 dc - dc 升压转换器中,所选电感值会影响输入电流纹波、输出电容大小和瞬态响应。选择正确的电感值有助于优化转换器尺寸与成本,并确保在所需的导通模式下工作。本文讲述的是在一定范围的输入电压下,计算电感值以维持所需纹波电流和所选导通模式的方法,并介绍了一种用于计算输入电压上限和下限模式边界的数学方法。
 

 





导通模式



升压转换器的导通模式由相对于直流输入电流 (IIN) 的电感纹波电流峰峰值 (ΔIL) 的大小决定。这个比率可定义为电感纹波系数 (KRF)。电感越高,纹波电流和 KRF 就越低。

  (1) , 其中    (2)
 
在连续导通模式 (CCM) 中,正常开关周期内,瞬时电感电流不会达到零 (图1)。因此,当 ΔIL 小于 IIN 的2倍或 KRF <2时,CCM 维持不变。MOSFET 或二极管必须以 CCM 导通。这种模式通常适用于中等功率和高功率转换器,以最大限度地降低元件中电流的峰值和均方根值。当 KRF > 2 且每个开关周期内都允许电感电流衰减到零时,会出现非连续导通模式 (DCM) (图2)。直到下一个开关周期开始前,电感电流保持为零,二极管和 MOSFET 都不导通。这一非导通时间即称为 tidle。DCM 可提供更低的电感值,并避免输出二极管反向恢复损耗。
 


图1 – CCM 运行
  

图2 – DCM 运行


当 KRF = 2 时,转换器被认为处于临界导通模式 (CrCM) 或边界导通模式 (BCM)。在这种模式下,电感电流在周期结束时达到零,正如 MOSFET 会在下一周期开始时导通。对于需要一定范围输入电压 ( VIN)的应用,固定频率转换器通常在设计上能够在最大负载的情况下在指定 VIN 范围内,以所需要的单一导通模式 (CCM 或 DCM) 工作。随着负载减少,CCM 转换器最终将进入 DCM 工作。在给定 VIN 下,使导通模式发生变化的负载就是临界负载(ICRIT)。在给定 VIN 下,引发 CrCM / BCM 的电感值被称为临界电感(LCRIT),通常发生于最大负载的情况下。





纹波电流与 VIN



众所周知,当输入电压为输出电压 (VOUT) 的一半时,即占空比 (D) 为50%时 (图3),在连续导通模式下以固定输出电压工作的 DC-DC 升压转换器的电感纹波电流最大值就会出现。这可以通过数学方式来表示,即设置纹波电流相对于 D 的导数 (切线的斜率) 等于零,并对 D 求解。简单起见,假定转换器能效为100%。
 
根据 
  (3)、  (4) 和   (5),
 
并通过 CCM 或 CrCM 的电感伏秒平衡
  (6),
 
则 
  (7).
 
将导数设置为零,   
  (8)
我们就能得出 
  (9).  
 

图3 – CCM 中的电感纹波电流





CCM 工作



为了选择 CCM 升压转换器的电感值 (L),需要选择最高 KRF 值,确保整个输入电压范围内都能够以 CCM 工作,并避免峰值电流受 MOSFET、二极管和输出电容影响。然后计算得出最小电感值。KRF 最高值通常选在0.3和0.6之间,但对于 CCM 可以高达2.0。如前所述,当 D = 0.5 时,出现纹波电流 ΔIL 最大值。那么,多少占空比的情况下会出现 KRF 最大值呢?我们可以通过派生方法来求得。

假设 η = 100%, 则 
  (10),  
 
然后将(2)、(6)、(7) 和 (10) 代入(1) ,得出:
 
 (11)                          
 
  (12).  
 
对 D 求解,可得
  (13).

D = 1 这一伪解可被忽略,因为它在稳态下实际上是不可能出现的 (对于升压转换器,占空比必须小于1.0)。因此,当 D =⅓ 或 VIN = ⅔VOUT 时的纹波因数 KRF 最高,如图4所示。使用同样的方法还能得出在同一点的最大值 LMIN、LCRIT 和 ICRIT
 

图4 – 当 D =⅓ 时 CCM 纹波系数 KRF 最高值

 
对于 CCM 工作,最小电感值 (LMIN)应在最接近 ⅔ VOUT 的实际工作输入电压 (VIN(CCM)) 下进行计算。根据应用的具体输入电压范围,VIN(CCM) 可能出现在最小 VIN、最大 VIN、或其间的某个位置。解方程 (5) 求 L,并根据 VIN(CCM) 下的 KRF 重新计算,可得出

  (14),其中 VIN(CCM) 为最接近⅔VOUT 的实际工作 VIN。  
   
对于临界电感与 VIN 和 I
OUT 的变化,KRF = 2,可得出
 
  (15).
 
在给定 VIN 和 L 值的条件下,当 KRF = 2时,即出现临界负载 (ICRIT):
 
  (16)
 




DCM 工作 



如图5所示,在一定工作 VIN 和输出电流 (IOUT) 下的电感值小于 LCRIT 时,DCM 模式工作保持不变。对于 DCM 转换器,可选择最短的空闲时间以确保整个输入电压范围内均为 DCM 工作。tidle 最小值通常为开关周期的3%-5%,但可能会更长,代价是器件峰值电流升高。然后采用 tidle 最小值来计算最大电感值 (LMAX)。LMAX 必须低于 VIN 范围内的最低 LCRIT。对于给定的 VIN,电感值等于 LCRIT (tidle= 0) 时引发 CrCM。
 

图5 – LCRIT 与标准化 VIN 的变化

 
为计算所选最小空闲时间 (tidle(min)) 的 LMAX,首先使用 DCM 伏秒平衡方程求出 tON(max) (所允许的 MOSFET 导通时间最大值) 与 VIN 的函数,其中 tdis 为电感放电时间。
 
  (17),其中

   (18)
 
可得出
 
  (19).
 
平均 (直流) 电感电流等于转换器直流输入电流,通过重新排列 (17),可得出 tdis 相对于 tON 的函数。简单起见,我们将再次假设 PIN = POUT
 
  (20) ,其中  (21).
 
将方程 (3)、(5)、(10)、(19) 和 (21) 代入 (20),求得 VIN (DCM) 下的 L
 
  (22).
 
LMAX 遵循类似于 LCRIT 的曲线,且同在 VIN = ⅔VOUT 时达到峰值。为确保最小 tidle,要计算与此工作点相反的实际工作输入电压 (VIN (DCM)) 下的最低 LMAX 值。根据应用的实际输入电压范围,VIN(DCM) 将等于最小或最大工作 VIN。若整体输入电压范围高于或低于 ⅔ VOUT(含⅔ VOUT),则 VIN(DCM) 是距 ⅔ VOUT 最远的输入电压。若输入电压范围覆盖到了 ⅔ VOUT,则在最小和最大 VIN 处计算电感,并选择较低 (最差情况下) 的电感值。或者,以图表方式对 VIN 进行评估,以确定最差情况。
 




输入电压模式边界 



当升压转换器的输出电流小于 ICRIT 与 VIN 的最大值时,如果输入电压增加到高于上限模式边界或下降到低于下限模式边界,即 IOUT 大于 ICRIT 时,则将引发 CCM 工作。而 DCM 工作则发生于两个 VIN 的模式边界之间,即 IOUT 小于 ICRIT 时。要想以图表方式呈现 VIN 下的这些导通模式边界,在相同图表中绘制临界负载 (使用所选电感器) 与输入电压和相关输出电流的变化曲线。然后在 X 轴上找到与两条曲线相交的两个 VIN 值 (图6)。
 

图6 – 输入电压模式边界

 
要想以代数方式呈现 VIN 的模式边界,首先将临界负载的表达式设置为等于相关输出电流,以查找交点:
 
  (23).
 
这可以重写为一个三次方程,KCM 可通过常数计算得出
 
  (24)     其中

  (25).
 
这里,三次方程通式 x3 + ax2 + bx + c = 0 的三个解可通过三次方程的三角函数解法得出 [1] [2]。在此情况下,x1 项的“b”系数为零。我们将解定义为矢量 VMB
 
我们知道
 
  (26)、  

    (27)、   以及

  (28),
 
    (29).
 
由于升压转换器的物理限制,任何 VMB ≤ 0或VMB > VOUT 的解均可忽略。两个正解均为模式边界处 VIN 的有效值。
 




模式边界 – 设计示例 



我们假设一个具有以下规格的 DCM 升压转换器:
 
VOUT  = 12 V
IOUT  = 1 A
L  = 6 μH
FSW  = 100 kHz
 
首先,通过 (25) 和 (28) 计算得出 KCM 和 θ:
 

 
.
 
将 VOUT 和计算所得的 θ 值代入 (29),得出模式边界处的 VIN 值:
 
.
 
忽略伪解 (-3.36 V),我们在 4.95 V 和 10.40 V 得到两个输入电压模式边界。这些计算值与图7所示的交点相符。
 

图7 – 计算得出的模式边界





结论 



电感值会影响升压转换器的诸多方面,若选择不当,可能会导致成本过高、尺寸过大、或性能不佳。通过了解电感值、纹波电流、占空比和导通模式之间的关系,设计人员就能够确保输入电压范围内的所需性能。
 




参考文献 



[1] H. W. Turnbull, Theory of Equations, Chapter IX, Edinburgh & London: Oliver and Boyd, 1952.

[2] I. J. Zucker, "The cubic equation - a new look at the irreducible case," The Mathematical Gazette, vol. 92, no. 524, pp. 264-268, July 2008.


END

来源:电源研发精英圈

版权归原作者所有,如有侵权,请联系删除。

推荐阅读

互感器、电能表接线和原理讲解!

满足你的好奇,我们把示波器拆了!

别小看这不起眼的电阻,里面有很多学问!

电源Fan 了解行业动态,学习深度技术,观察微小事物——电源Fan,一个涨知识的公众号。
评论 (0)
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 195浏览
  • 4月22日下午,备受瞩目的飞凌嵌入式「2025嵌入式及边缘AI技术论坛」在深圳深铁皇冠假日酒店盛大举行,此次活动邀请到了200余位嵌入式技术领域的技术专家、企业代表和工程师用户,共享嵌入式及边缘AI技术的盛宴!1、精彩纷呈的展区产品及方案展区是本场活动的第一场重头戏,从硬件产品到软件系统,从企业级应用到高校教学应用,都吸引了现场来宾的驻足观看和交流讨论。全产品矩阵展区展示了飞凌嵌入式丰富的产品线,从嵌入式板卡到工控机,从进口芯片平台到全国产平台,无不体现出飞凌嵌入式在嵌入式主控设备研发设计方面的
    飞凌嵌入式 2025-04-28 14:43 149浏览
  • 晶振在使用过程中可能会受到污染,导致性能下降。可是污染物是怎么进入晶振内部的?如何检测晶振内部污染物?我可不可以使用超声波清洗?今天KOAN凯擎小妹将逐一解答。1. 污染物来源a. 制造过程:生产环境不洁净或封装密封不严,可能导致灰尘和杂质进入晶振。b. 使用环境:高湿度、温度变化、化学物质和机械应力可能导致污染物渗入。c. 储存不当:不良的储存环境和不合适的包装材料可能引发化学物质迁移。建议储存湿度维持相对湿度在30%至75%的范围内,有助于避免湿度对晶振的不利影响。避免雨淋或阳光直射。d.
    koan-xtal 2025-04-28 06:11 142浏览
  • 一、智能家居的痛点与创新机遇随着城市化进程加速,现代家庭正面临两大核心挑战:情感陪伴缺失:超60%的双职工家庭存在“亲子陪伴真空期”,儿童独自居家场景增加;操作复杂度攀升:智能设备功能迭代导致用户学习成本陡增,超40%用户因操作困难放弃高阶功能。而WTR096-16S录音语音芯片方案,通过“语音交互+智能录音”双核驱动,不仅解决设备易用性问题,更构建起家庭成员间的全天候情感纽带。二、WTR096-16S方案的核心技术突破1. 高保真语音交互系统动态情绪语音库:支持8种语气模板(温柔提醒/紧急告警
    广州唯创电子 2025-04-28 09:24 187浏览
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 180浏览
  •  探针台的维护直接影响其测试精度与使用寿命,需结合日常清洁、环境控制、定期校准等多维度操作,具体方法如下:一、日常清洁与保养1.‌表面清洁‌l 使用无尘布或软布擦拭探针台表面,避免残留清洁剂或硬物划伤精密部件。l 探针头清洁需用非腐蚀性溶剂(如异丙醇)擦拭,检查是否弯曲或损坏。2.‌光部件维护‌l 镜头、观察窗等光学部件用镜头纸蘸取wu水jiu精从中心向外轻擦,操作时远离火源并保持通风。3.‌内部防尘‌l 使用后及时吹扫灰尘,防止污染物进入机械滑
    锦正茂科技 2025-04-28 11:45 108浏览
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 236浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 261浏览
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 201浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 191浏览
  • 文/郭楚妤编辑/cc孙聪颖‍越来越多的企业开始蚕食动力电池市场,行业“去宁王化”态势逐渐明显。随着这种趋势的加强,打开新的市场对于宁德时代而言至关重要。“我们不希望被定义为电池的制造者,而是希望把自己称作新能源产业的开拓者。”4月21日,在宁德时代举行的“超级科技日”发布会上,宁德时代掌门人曾毓群如是说。随着宁德时代核心新品骁遥双核电池的发布,其搭载的“电电增程”技术也走进业界视野。除此之外,经过近3年试水,宁德时代在换电业务上重资加码。曾毓群认为换电是一个重资产、高投入、长周期的产业,涉及的利
    华尔街科技眼 2025-04-28 21:55 152浏览
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 209浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 173浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 206浏览
我要评论
0
3
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦