IGBT与快恢复二极管匹配技术的特点和优势

电源Fan 2021-09-30 09:04

 1. 引言
  进入二十一世纪以来,以大规模风力发电、太阳能发电为代表的新能源是我国未来能源结构调整的重点发展方向,而传统的交流输电和直流输电技术已经难以满足以大规模风电和太阳能发电安全可靠接入电网的迫切需求。而基于高压大功率电力电子技术的灵活交流输电和高压直流输电是未来智能电网实现各种大规模新能源的安全高效的接入电网的核心技术之一。
  在新一代高压大功率可关断电力电子器件中,由于IGBT器件的优越的门极控制功能、较低的通态损耗和电压电流参数的迅速提高,使得IGBT器件已成为大功率电力电子技术中的首选器件。IGBT能够实现节能减排,并提高电力的利用效率,具有很好的环境保护效益,被公认为电力电子技术第三次革命最具代表性的产品,是未来应用发展的必然方向。
  不过,随着lGBT的应用日益广泛,人们对其性能的要求也越来越高,一方面,为了提高工作频率,降低系统噪声。IGBT的开关速度应越快越好,另一方面,为了在不増大散热片尺寸的情况下IGBT的功耗又必须足够低。此外,电力系统应用中,IGBT的特性必须非常稳定,保证电力的安全、可靠、稳定的运行。近几年来,芯片技术不断改进,一代又一代高性能的IGBT及IGBT模块层出不穷,尽管如此,IGBT的功耗还没有降到用户满意的程度,特性还是不够稳定。
  在这种情况下,针对电力系统的特殊特点和需求,进行IGBT与快恢复二极管匹配技术的研究可以解决现阶段降低能耗、增加系统的稳定性与可靠性、减少射频与电磁干扰等问题。IGBT与快恢复二极管匹配技术不仅可以从芯片级提出相应的设计参数,还可以从模块级、装置缀、系统级提出对器件相应的参数,以用于改善整个系统的性能,比如针对IGBT的串联需求对IGBT压接式模块进行lGBT与FRD的匹配研究。
 
  2. IGBT与快恢复二极管匹配技术
  IGBT与快恢复二极管的匹配技术就是针对不同的电力应用,在特定的IGBT芯片的情况下合理设计快恢复二极管的结构参数、封装参数及电路参数的一种新型技术。此技术将为lGBT模块的设计与研制提供一定的理论和实验依据,为电力电子器件的研制和电力电子装置的研发带来优势,可以减少电力电子装置在使用中的电能损耗,为节能减排,低碳社会作出贡献。
 
  2.1 IGBT与快恢复二极管匹配技术的特点和优势
  lGBT与快恢复二极管的匹配技术的主要特点如下:
  1)对于lGBT模块选择合适的IGBT芯片与快恢复二极管芯片;
  2)设计更合理的芯片结构,改变lGBT芯片结构以及快恢复二极管的软度参数以求减小损耗和提高可靠性。
  3)在封装上进行更加合理的设计。
  4)在市场上现有的IGBT与快恢复二极管的条件下,选择合理的匹配参数。
  IGBT与快恢复二极管的匹配技术优势在于可以应用到任何包含IGBT应用的场合,比如可再生能源并网、孤岛供电、城市电网供电、电网互联、无功补偿、高压变频等领域,是实现节能减持,低碳社会的有力措施,是我国建设资源节约型和环境友好型社会所急需的电力系统关键技术。
 
  2.2 IGBT与快恢复二极管匹配的技术应用前景
  做好IGBT与快恢复二极管的匹配技术就为IGBT模块的应用技术打下坚实的基础,可以应用于含有lGBT和快恢复二极管的各个行业,为节能减排,低碳生活做出有利贡献,IGBT是现代逆变器的主流功率器件,快恢复二极管是其不可缺少的搭档,这种技术可以广泛应用于变频家电、电机、太阳能发电、风力发电、电动汽车、高速铁路和智能网等各个节能领域,优化IGBT与快恢复二极管匹配技术可以使IGBT变频装置噪声降低,功率因数提高,节省电能,节省材料,缩小装置体积,降低成本使装置工作稳定可靠,寿命大大延长,减少对电网的污染。
 
  2.3 IGBT与快恢复二极管的匹配技术的发展趋势
  随着lGBT与FRD的发展,其耐压等级、电流容量和开关频率进一步得到提高,要求IGBT与FRD的匹配更加严格,特别是在高压大功率场合。随着电力电子技术和新材料器件的发展,IGBT与FRD的匹配面临更严峻的考验,合理的选择参数进行匹配不仅能够降低功率损耗,而且有利于提高器件工作可靠性。IGBT芯片的发展将会带动FRD芯片的发展,两个芯片的同时发展必然将带来IGBT与快恢复二极管的匹配技术的发展,参数的正确选择可以使IGBT模块在较大的温度和电流范围内具备较低的正向导通压降,较小的开关损耗和恢复电荷,使器件可以覆盖更广的功率范围,更好的动态抗冲击性以确保发生短路时能够避免器件损坏。
  IGBT与FRD匹配的发展趋势包括:
  1)用碳化硅二极管代替快恢复二极管,实验证明1200V IGBT模块总能耗可改善20%~40%。
  2)新型材料:为充分利用新材料器件的优势,要求模块结构在更高结温下的寄生电感和电容要小,比如碳化硅、氨化镓器件等。
  3)不断地改进IGBT与快恢复二极管的器件结构和性能,发明新型器件,组合新的模块以降低功率损耗。
 
  3. 仿真分析
  为了研究影响lGBT与快恢复二极管匹配的参数,本文采用ISE仿真软件对IGBT与快恢复二极管的匹配技术进行仿真研究。
  主要进行了以下两个方面的仿真研究:1)采用不同的快恢复二极管与IGBT进行动态特性仿真;2)在同一IGBT与快恢复二极管仿真的基础上改变仿真条件进行仿真,比如改变线路的杂生电感、封装的寄生电感与电容、驱动电阻等。
 
  3.1不同的快恢复二极管与IGBT进行动态特性仿真
  快恢复二极管A参数,P+阳极表面掺杂1.5e16cm3,结深20μm;N-漂移区浓度为6e13cm3,
厚度为120μm;N+阴极的最高表面浓度为5e19cm3,厚度为50μm;整体进行寿命控制,电子寿命为1e-7s,空穴寿命为1.6e-7s。
  快恢复二极管B参数:P+阳极表面掺杂5e15cm3,结深6μm;N-漂移区浓度为6e13cm3,厚度为74μm;在硅片背面形成缓冲层的N+阴极,其中缓冲层的最高浓度为4e16cm3,厚为18μm;N+阴极的最高表面浓度为5e19cm3,厚度为1μm;整体进行寿命控制,电子寿命为7e-7s,空穴寿命为7e-7s。仿真电路如图1所示:
 
图1 IGBT与快恢复二极管的仿真电路
 
  仿真数据如表1所示,根据仿真数据可以判定快恢复二极管B比快恢复二极管A在与IGBT匹配时lGBT动态特性好,从而在进行IGBT与快恢复二极管匹配时要进行选择合适的快恢复二极管,外特性包括:额定电压、额定电流、额定频率等;器件参数包括结构、寿命控制、阳极发射极效率控制等。
表1 不同FRD与IGBT匹配的IGBT动态特性分析
 
 
  3.2在同一IGBT与快恢复二极管仿真的基础上改变仿真条件
  本仿真采用上述仿真的快恢复二极管B进行考虑封装与驱动带来的寄生电感与电容和电阻改变相应仿真条件的仿真试验,主要包括:a)集电极加入封装寄生电感13nH、(b)基极电阻増大到30欧姆、(c)二极管两端加入寄生电容40pf、(d)基极电阻增大到30欧姆并且二极管两端加入寄生电容40pf、(e)二极管两端加入寄生电容40pf且基极加10nH寄生电感、(f)二极管两端加入寄生电容40pf,基极加10nH寄生电感且基极电阻为25欧姆,每个方案的电路参数如表2所示,仿真电路如图2所示。
表2 改变仿真方案的电路参数表
 
 
图2 IGBT与快恢复二极管仿真电路图
 
  仿真数据如表3所示,根据仿真数据可以推出在其他条件不改变的条件下,1)根据a与b、c与d、e与f的仿真结果可以的得到:增加门极驱动电阻会增大IGBT的关断下降时间,增加损耗;2)根据第一个仿真试验FRD B与本仿真试验中的a进行对比可以看出:增大发射极的封装电感会大幅增大IGBT开通的恢复时间和开通损耗;3)根据c与e的仿真结果可以得到:増大基极的封装电感会增大IGBT关断下降时间,增加关断损耗。4)而由a与c、b与d的仿真数据可以得到在一定范围内快恢复二极管的寄生电容对IGBT的动态特性影响不大,因此,减小门极驱动电阻,降低封装寄生电感可以提高IGBT与快恢复二极管的匹配性能。
表3 改变电路参数的IGBT的动态特性分析
 
 
  4. 结论
  本文简述了lGBT与快恢复二极管匹配技术的特点和优势、应用前景以及发展趋势,应用ISE软件进行IGBT与快恢复二极管匹配技术的仿真研究与设计,得到影响IGBT与快恢复二极管的匹配的技术参數:1)lGBT与快恢复二极管的額定电压;2)IGBT与快恢复二极管的额定电流;3)lGBT模块封装的寄生电感;4)IGBT模块封装的寄生电容;5) lGBT驱动的基极电阻;6) IGBT与快恢复二极管的额定频率;7)外电路的参数设计。从上述结论可知,IGBT与FRD的匹配不仅需要考虑器件间的匹配关系,还需要综合考虑外电路对器件特性的影响。
  本文提出在IGBT对特定的情况下如何优化IGBT与快恢复二极管匹配技术的几种方法如下:1)选择额定参效(电压、电流、频率)与IGBT一致的快恢复二极管;2)降低驱动门扱电阻;3)降低IGBT与快恢复二极管并联的寄生电感(集电极与基极);4)电路设计时适当考虑IGBT与快恢复二极管井联的寄生电容;5)根据IGBT与快恢复二极管的应用需求合理设计外电路的参数(电容、电感、电阻等)。
  IGBT与快恢复二极管匹配技术是实现节约能源,实行低碳的有力措施,是我国建设资源节约型和环境友好型社会所急需的电力系统关键技术。


END

来源:电力电子技术与新能源

版权归原作者所有,如有侵权,请联系删除。

推荐阅读

互感器、电能表接线和原理讲解!

满足你的好奇,我们把示波器拆了!

别小看这不起眼的电阻,里面有很多学问!

电源Fan 了解行业动态,学习深度技术,观察微小事物——电源Fan,一个涨知识的公众号。
评论 (0)
  •   无人机蜂群电磁作战仿真系统软件,是专门用于模拟、验证无人机蜂群在电磁作战环境中协同、干扰、通信以及对抗等能力的工具。下面从功能需求、技术架构、典型功能模块、发展趋势及应用场景等方面展开介绍:   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提供了有力支持。   功能需求   电磁环境建模:模拟构建复杂多样的电磁环境,涵盖各类电磁干扰源与
    华盛恒辉l58ll334744 2025-04-17 16:49 104浏览
  • 一、行业背景与需求智能门锁作为智能家居的核心入口,正从单一安防工具向多场景交互终端演进。随着消费者对便捷性、安全性需求的提升,行业竞争已从基础功能转向成本优化与智能化整合。传统门锁后板方案依赖多颗独立芯片(如MCU、电机驱动、通信模块、语音模块等),导致硬件复杂、功耗高、开发周期长,且成本压力显著。如何通过高集成度方案降低成本、提升功能扩展性,成为厂商破局关键。WTVXXX-32N语音芯片通过“单芯片多任务”设计,将语音播报、电机驱动、通信协议解析、传感器检测等功能整合于一体,为智能门锁后板提供
    广州唯创电子 2025-04-18 09:04 148浏览
  • 自动驾驶技术的飞速发展,正在重新定义未来出行的边界。从感知到决策,从规划到控制,每一个环节都离不开海量、精准的高质量数据支撑。然而,随着传感器数量的增加和数据规模的指数级增长,行业正面临一系列挑战:多源传感器数据的时间同步难题、复杂数据格式的适配、测量技术的灵活性不足、设备集成周期冗长等,这些问题正成为自动驾驶研发与测试的“隐形瓶颈”。基于技术积累与行业洞察,本文分享一套创新的ADAS时空融合数据采集方案。通过硬件与软件的深度协同优化,能够很好地解决数据采集中的核心痛点,还为自动驾驶研发提供了高
    康谋 2025-04-17 09:54 81浏览
  • 现阶段,Zigbee、Z-Wave、Thread、Wi-Fi与蓝牙等多种通信协议在智能家居行业中已得到广泛应用,但协议间互不兼容的通信问题仍在凸显。由于各协议自成体系、彼此割据,智能家居市场被迫催生出大量桥接器、集线器及兼容性软件以在不同生态的设备间构建通信桥梁,而这种现象不仅增加了智能家居厂商的研发成本与时间投入,还严重削减了终端用户的使用体验。为应对智能家居的生态割裂现象,家居厂商需为不同通信协议重复开发适配方案,而消费者则需面对设备入网流程繁琐、跨品牌功能阉割及兼容隐患等现实困境。在此背景
    华普微HOPERF 2025-04-17 17:53 77浏览
  • 【摘要/前言】4月春日花正好,Electronica就在浪漫春日里,盛大启幕。2025年4月15-17日,慕尼黑上海电子展于上海新国际博览中心成功举办。伴随着AI、新能源汽车、半导体的热潮,今年的Electronica盛况空前。请跟随Samtec的视角,感受精彩时刻!【 Samtec展台:老虎的朋友圈技术派对】借天时、占地利、聚人和,Samtec 展台人气爆棚!每年展会与大家相聚,总能收获温暖与动力~Samtec展台位于W3展馆716展位,新老朋友相聚于此,俨然一场线下技术派对!前沿D
    电子资讯报 2025-04-17 11:38 56浏览
  •   北京华盛恒辉无人机电磁兼容模拟训练系统软件是专门用于模拟与分析无人机在复杂电磁环境中电磁兼容性(EMC)表现的软件工具。借助仿真技术,它能帮助用户评估无人机在电磁干扰下的性能,优化电磁兼容设计,保障无人机在复杂电磁环境中稳定运行。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为无人机电磁兼容模拟训练系统的推广和应用提供了有力支持。   系统功能   电磁环境建模:支持三维
    华盛恒辉l58ll334744 2025-04-17 15:10 79浏览
  • 置信区间反映的是“样本均值”这个统计量的不确定性,因此使用的是标准误(standard error),而不是直接用样本标准差(standard deviation)。标准误体现的是均值的波动程度,而样本标准差体现的是个体数据的波动程度,两者并非一回事,就如下图所显示的一样。下面优思学院会一步一步解释清楚:一、标准差和标准误,究竟差在哪?很多同学对“标准差”和“标准误”这两个概念傻傻分不清楚,但其实差别明显:标准差(Standard Deviation,σ或s):是衡量单个数据点相对于平均值波动的
    优思学院 2025-04-17 13:59 29浏览
  • 1. 在Ubuntu官网下载Ubuntu server  20.04版本https://releases.ubuntu.com/20.04.6/2. 在vmware下安装Ubuntu3. 改Ubuntu静态IP$ sudo vi /etc/netplan/00-installer-config.yaml# This is the network config written by 'subiquity'network:  renderer: networkd&nbs
    二月半 2025-04-17 16:27 105浏览
  •   无人机电磁兼容模拟训练系统软件:全方位剖析   一、系统概述   北京华盛恒辉无人机电磁兼容模拟训练系统软件,专为满足无人机于复杂电磁环境下的运行需求而打造,是一款专业训练工具。其核心功能是模拟无人机在电磁干扰(EMI)与电磁敏感度(EMS)环境里的运行状况,助力用户评估无人机电磁兼容性能,增强其在复杂电磁场景中的适应水平。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为
    华盛恒辉l58ll334744 2025-04-17 14:52 47浏览
  • 一、行业背景与需求随着智能化技术的快速发展和用户对便捷性需求的提升,电动车行业正经历从传统机械控制向智能交互的转型。传统电动车依赖物理钥匙、遥控器和独立防盗装置,存在操作繁琐、功能单一、交互性差等问题。用户期待通过手机等智能终端实现远程控制、实时数据监控及个性化交互体验。为此,将蓝牙语音芯片集成至电动车中控系统,成为推动智能化升级的关键技术路径。二、方案概述本方案通过在电动车中控系统中集成WT2605C蓝牙语音芯片,构建一套低成本、高兼容性的智能交互平台,实现以下核心功能:手机互联控制:支持蓝牙
    广州唯创电子 2025-04-18 08:33 150浏览
  •   无人机蜂群电磁作战仿真系统全解析   一、系统概述   无人机蜂群电磁作战仿真系统是专业的仿真平台,用于模拟无人机蜂群在复杂电磁环境中的作战行为与性能。它构建虚拟电磁环境,模拟无人机蜂群执行任务时可能遇到的电磁干扰与攻击,评估作战效能和抗干扰能力,为其设计、优化及实战应用提供科学依据。   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提
    华盛恒辉l58ll334744 2025-04-17 16:29 107浏览
  • 一、汽车智能化浪潮下的蓝牙技术革新随着智能网联汽车的快速发展,车载信息娱乐系统(IVI)正从单一的驾驶辅助向“第三生活空间”转型。蓝牙技术作为车内无线连接的核心载体,承担着音频传输、设备互联、数据交互等关键任务。然而,传统方案中MCU需集成蓝牙协议栈,开发周期长、成本高,且功能扩展性受限。WT2605C蓝牙语音芯片应势而生,以双模蓝牙SOC架构重新定义车用蓝牙系统的开发模式,通过“多、快、好、省”四大核心价值,助力车企快速打造高性价比的智能座舱交互方案。二、WT2605C芯片的四大核心优势1.
    广州唯创电子 2025-04-17 08:38 56浏览
  •   无人机电磁环境效应仿真系统:深度剖析   一、系统概述   无人机电磁环境效应仿真系统,专为无人机在复杂电磁环境下的性能评估及抗干扰能力训练打造。借助高精度仿真技术,它模拟无人机在各类电磁干扰场景中的运行状态,为研发、测试与训练工作提供有力支撑。   应用案例   目前,已有多个无人机电磁环境效应仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁环境效应仿真系统。这些成功案例为无人机电磁环境效应仿真系统的推广和应用提供了有力支持。   二、系统功能  
    华盛恒辉l58ll334744 2025-04-17 15:51 105浏览
  • 近日,全球6G技术与产业生态大会(简称“全球6G技术大会”)在南京召开。紫光展锐应邀出席“空天地一体化与数字低空”平行论坛,并从6G通信、感知、定位等多方面分享了紫光展锐在6G前沿科技领域的创新理念及在空天地一体化技术方面的研发探索情况。全球6G技术大会是6G领域覆盖广泛、内容全面的国际会议。今年大会以“共筑创新 同享未来”为主题,聚焦6G愿景与关键技术、安全可信、绿色可持续发展等前沿主题,汇聚国内外24家企业、百余名国际知名高校与科研代表共同商讨如何推动全行业6G标准共识形成。6G迈入关键期,
    紫光展锐 2025-04-17 18:55 169浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦