高分辨率Δ-ΣADC中有关噪声的十大问题

ittbank 2019-03-01 17:45


任何高分辨率信号链设计的基本挑战之一是确保系统本底噪声足够低,以便模数转换器(ADC)能够分辨您感兴趣的信号。例如,如果您选择德州仪器ADS1261(一个24位低噪声Δ-ΣADC),您可在2.5 SPS下解析输入低至6 nVRMS,增益为128 V / V的信号。

但是,从系统的角度来看,您需要担心的不仅仅是ADC噪声——毕竟所有组件(包括放大器、电压基准、时钟和电源)都会产生一些噪声——这些器件对系统噪声的累积影响是什么?更重要的是,您的系统能够解决您感兴趣的信号吗?

为助您更好地理解系统噪声并将这些知识应用到您的设计中,我最近撰写了一篇名为“解决信号”的技术文章系列。该系列探讨了典型信号链中的常见噪声源,并通过降低噪声和保持高精度测量的方法辅助理解。

以下是该系列中10个最关键的问题和答案,可帮助您开始使用精密ADC进行设计。

1.您将在ADC中发现何种类型的噪声?

总ADC噪声有两个主要组成部分:量化噪声和热噪声。量化噪声来自将无限数量的模拟电压映射到有限数量的数字代码的过程(图1左侧)。因此,任何单个数字输出都可对应于数个模拟输入电压,这些电压可能相差一半的最低有效位(LSB)。

由于电导体内电荷的物理移动(图1右侧),热噪声是所有电子元件中固有的现象。不幸的是,ADC终端用户不能干涉器件的热噪声,因为它是ADC设计的一个功能。

图 1:量化噪声(左)和热噪声(右)

热噪声和量化噪声是否同样影响低分辨率和高分辨率ADC?阅读第1部分“Δ-Σ ADC中的噪声简介了解相关信息”。

 2. 如何测量和指定ADC噪声?

ADC制造商使用两种方法来测量ADC噪声。第一种方法将ADC的输入短接在一起,以测量由于热噪声导致的输出代码的微小变化。第二种方法涉及输入具有特定幅度和频率的正弦波(例如1kHz下为1 VPP)并报告ADC如何量化正弦波。图2展示了这些类型的噪声测量。

图 2:正弦波输入测试设置(左)和输入短路测试设置(右)

每类ADC使用哪种测量方法?请阅读第2部分中有关噪声测量方法和规范的更多信息。

3. 用于系统噪声分析的最佳噪声参数是多少?

对于ADC噪声分析,我建议使用输入参考噪声。我加粗此短语,因为使用输入参考噪声来定义ADC性能并不常见。实际上,大多数工程师只谈论相关参数,例如有效和无噪声的分辨率,而当他们无法最大化这些值时会深感担忧。毕竟,如果您只是使用24位ADC来实现16位ADC的有效分辨率,感觉就像您在为实际不会使用的ADC性能而买单。

但是,16位ADC的有效分辨率并不一定能告知您ADC将使用多大的满量程范围(FSR)。也就是说,您可能只需要16位有效分辨率,但如果最小输入信号为50 nV,则无法使用16位ADC来解决问题。因此,高分辨率Δ-ΣADC的真正好处是它能够提供的低输入参考噪声水平。这并不意味着有效的解决方案并不重要 - 只是它不是参数化系统的最佳方式。

第3部分使用无噪声分辨率和输入参考噪声定义系统噪声参数的设计实例进一步采用这些要求。哪一种能够实现最快、适应性最强的解决方案?阅读文章发现答案。

4. 什么是ENBW,为什么它很重要?

在一般信号处理术语中,滤波器的有效噪声带宽(ENBW)是理想的实际滤波器的截止频率fC,其噪声功率近似等于原始滤波器的噪声功率H(f)。

作为类比,您可考虑一下在寒冷的夜晚您家中的情况。为降低能源成本并节省资金,您需要尽可能地关闭门窗以限制进入的冷空气量。在这种情况下,您的家是系统,您的门窗是滤波器,冷空气是噪声,ENBW是衡量您的门窗是如何打开(或关闭)的。间隙越大(ENBW),进入家中(系统)的冷空气(噪声)越多,反之亦然,如图3所示。

 

图 3:宽ENBW会产生更多噪声(左);窄ENBW产生更少噪声(右)

哪些系统组件对ENBW有贡献?阅读第4部分以了解更多信息。

5. 您如何计算系统的噪声带宽?

如果您的信号链有多个滤波器组件,则必须通过组合信号链中的所有下游滤波器来计算每个组件的ENBW。要组合滤波器,请将它们绘制为幅度(以分贝为单位)与频率的关系,然后逐点添加。

例如,要计算图4中放大器的噪声贡献,您必须将放大器的带宽与抗混叠滤波器、ADC的数字滤波器和任何后处理滤波器相结合。在这种情况下,您可忽略电磁干扰(EMI)滤波器,因为它相对于放大器位于上游。

 

图 4:显示多个滤波源的典型信号链

这可能很复杂,请阅读第5部分学习ENBW近似方法以简化分析。

6.如果将外部放大器添加到ADC的输入端,这会如何影响系统噪声性能?

通过将ADC和放大器与各自的噪声源分开可更轻松地进行噪声分析。在这种情况下,您可将系统建模为无噪声放大器和无噪声ADC,前置条件是电压源等于两者的输入参考噪声,如图5所示。

图5:“无噪声”ADC和放大器通过参考输入总噪声前置

不幸的是,测得的输出噪声必须重新参考输入,因为输入参考噪声是大多数ADC数据手册中使用的规范。假设放大器和ADC噪声不相关,请采用两个值的和方根(RSS)来确定总输出参考噪声。您还需要通过放大器的增益GAMP来调整放大器噪声。公式1所示为得出的输出参考噪声:

如何将其转化为输入参考噪声?增益比例因子GAMP的后果是什么?阅读第6部分以了解相关信息。

7. 是否存在增益过多的情况?

在第七系列文章中,我查看了一个示例,该示例在ADS1261的输入端添加了多个外部放大器,并测量了最终的噪声性能。然后,我使用其集成的可编程增益放大器将这些组合与ADS1261的基线噪声性能进行了比较。为了更容易比较,我在每种组合的不同增益设置下绘制了噪声,这提供了有关将外部放大器添加到精密ADC如何影响性能以及性能如何随增益变化的数个见解。图6描述了该示例。

图 6:根据增益比较不同放大器的噪声性能与和ADS1261的关系

这个示例和图6图表有哪些关键要点?阅读第7部分“放大器噪声对Δ-Σ ADC的影响”了解更多信息。

8. 如何计算传入系统的参考噪声量?

参考噪声最有趣的特征之一是它会随着您使用的ADC FSR的大小呈现线性变化:如果输入信号非常小,则不会观察到太多参考噪声 - 因此可能会使用较大噪声进行参考。或者,如果输入信号大于中刻度,则可预期参考噪声占主导地位。在这种情况下,请始终确保ADC噪声和参考噪声具有可比性。图7定性地绘制了作为FSR利用率函数的参考噪声、ADC噪声和总噪声。

图7:作为FSR利用率函数的参考噪声、ADC噪声和总噪声

这个图上的关键点 - A、B和C代表什么?更改输入信号与更改系统增益如何会影响参考噪声?在第8部分中找到这些问题的答案

来源:德州仪器  作者:Bryan Lizon


ittbank 让电子库存因技术而改变的ITT模式电商平台。引领和适应市场,以共享经济理念的创客及工程师为核心、以免费开放用户生成的数据为基础,为其提供高性价比的应用解决方案和及时精准的供求信息,快速提高产品开发周期和生产直通率、提升电子器件的应用附加值。
评论
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 114浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 109浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 126浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 85浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 170浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 142浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 103浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 90浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 107浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 138浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 186浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 92浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 143浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 141浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦