简 介: 对于网络上看到的一个最为简单的音频振荡电路进行测试,发现它的确具有工作可能性。并对于它的工作原理进行初步分析。
关键词
: 振荡电路,单结晶体管,负阻抗
在 吊打三极管[1] 展示了一个由单个NPN三极管、两个电阻,一个电容,一个LED和9V干电池组成的LED闪烁振荡电路。它是利用了三极管反向击穿时所呈现的“负阻抗”特性产生的间歇振荡器现象。
今天(2021-09-26)看到 Instructables[2] 网站上给出了另外一个简单的振荡电路( Simplest Oscillator (Transmitter) )。这个电路与上面的电路相同之处,都是不按常理出牌。下面这个电路从常理上来看,它不会产生振荡的。
那么这个电路是否真的能够振荡?它的工作原理又是什么呢?
原网站给出的电路图没有给出电路中的元器件。下面电路图中给出了实验电路以及各元器件的参数。
在面包板上搭建了上述简单的实验电路。那么它是否真的可以进行工作呢?
打开+5V电源,动圈式喇叭中便发出蜂鸣声音。电路震荡的频率并不是非常稳定,当手触碰喇叭,或者面包板上的元器件的时候,振荡频率都会发生变化。
可以看到实际施加在扬声器上的波形是间歇高频振荡波形。这个高频信号频率与包络线也会随着喇叭的不同位置以及测试示波器探头是否接入有关系。
下面是示波器探头不通过引线直接抵触在三极管E级测试的的波形。
使用示波器测量脉冲中高频振荡频率,居然达到了惊人的315MHz
!这的确出乎人的意料。
将三极管9018更换成 8050,它的截止频率为100MHz,低于上面测试脉冲高频信号的频率。更换之后,电路便没有脉冲输出了。
更换电容C1,可以改变脉冲低频成分的频率。增加C1,低频频率降低;减少C1,增加低频频率。
测试了两款扬声器。左边的扬声器的标称阻抗为4欧姆,右边的扬声器的标称阻抗也是4Ω。但是在接入电路之后,左边的扬声器没有振荡,右边的扬声器会产生震荡。
使用SmartTweezer测量两个扬声器的交流阻抗(10kHz下的电阻与电感)。可以看到两个扬声器的主要差别在于电感量不同。
● 左边扬声器:
电阻
:8.6Ω
电感
:230uH
● 右边扬声器:
电阻
:7.5Ω
电感
:64uH
上面的初步实验验证了上述振荡电路的能够工作,但问题来了:它为什么能够工作?原理是什么?
初步分析,这个电路应该是由扬声器及其引线中的电感成分,与三极管的Cbe,Cbc杂散电容形成了单管电容振荡电路。形成高频振荡之后,三极管的基极输入电阻也呈现出“负阻”特性,再由电路中的 R1、C1与三极管基极的负阻抗特性组成了间歇振荡电路。
这种利用负阻抗特性形成的间歇振荡器,最初在单结晶体管振荡电路中应用最为广泛。下面是基本的单结晶体管振荡电路图。
上述电路的工作的基本条件就是需要能够形成高频振荡,之后才能够形成音频振荡。而高频振荡中需要 应用到三极管以及扬声器的杂散参数,因此不同的三极管与扬声器对于高频振荡形成有影响。有的参数可以工作,有的不工作。
吊打三极管: https://zhuoqing.blog.csdn.net/article/details/109474940
[2]Instructables: https://www.instructables.com/
亲爱的卓大大,以下是我对“基础四轮组的”一点点想法:
智能车竞赛作为工科热门竞赛,至今已经诞生四轮,三轮,两轮,单车,麦克纳姆轮等多种组别,整体任务越来越多,愈加智能化。近来几年还单设了智能化程度更高的创意组。
四轮组作为传统组别,一直是智能车竞赛最为纯粹的速度组,极具观赏性。随着竞赛的日益成熟,速度担当的基础四轮组赛场均速多在3.5m/s-3.8m/s之间,并没有在速度上与其他组别拉开较大差距。在智能化的大趋势下,我觉得可以保留一个纯粹的“速度与激情”组别。
在公众号上看到了对基础四轮的讨论,给出的建议是增加赛道难度,增加花样,减小电磁与摄像头的差异。
我的观点恰恰相反:降低难度,减少花样,专攻速度。 对于摄像头与电磁的差异,我觉得方案选择能力也是竞赛工程能力的一部分,所以对二者没有特殊平衡性要求。
对此有以下建议:
由“基础四轮组”变更为“急速四轮组”。
赛道降低难度,取消特色元素,仅仅保留直道,弯道,十字。弯道最小曲率半径相比其他组别增加20cm,比如视觉组弯道最小处为30cm,那么急速四轮组调整为50cm。随着弯道半径的增加,一可以提高车模弯道极限速度,二可以增加电磁传感器前瞻(若弯道半径短,过长的前瞻会越过至隔壁赛道)。
摄像头高度限制放松至30cm,电磁前瞻不限制。
车模B,C车模任意选择,电机,舵机的型号与数量不可改动,轮胎打磨要求取消至少能看清花纹的限制,如果可以,甚至允许使用防滑胶套(再造“钱江一号”神话)。
希望以上建议,使得赛场上能够看到5m+++神车!!!给竞赛带来速度上的极致享受。