在实际的测量中,通常是在有明显噪声的情况下测量所需信号。更有甚者,想要测试的真实信号会淹没在噪声中,有点像噪音的示例包括语音、音乐、地震数据等。根据以上条件,在进行FFT分析时,必须满足可以在有背景噪声的情况下,准确的测出所需的信号。
在统计学中,提高对某个测量值准确性的方法是平均 (Average)。在处理一个信号结果时,通常就会让数据分析系统进行平均处理,本文主要阐述两种平均方式:RMS平均(能量平均)和线性平均。
RMS平均
当我们在观察频谱,并尝试猜测频谱分量的平均值时,这其实是一个粗略的估计RMS平均值的过程。因为此时估计的信号平均幅度,是没有任何相位差信息的。这种平均方式对于确定动态信号的平均功率非常适合,获取的平均值越多,对能量水平的估计准确性就越好。
上图分别展示了随机噪声,数字信号和人声的RMS平均频谱。这些示例中的每一个都是一个相当随机的过程,但是平均下来,我们可以看到其频谱的基本规律趋势。
如果我们想在存在噪声的情况下测量一个小的信号,RMS平均这种方式将为我们提供信号加噪声的良好估计结果,但是无法提高信噪比,因此只能对总信号及噪声/信号能量进行更准确的估算。
线性平均
基于上述平均方式,其实存在一种用于提高测量信噪比的技术,称为线性平均。
线性平均可以通过多种方式实现,但比较容易理解的是在时域中进行平均。在这种情况下,同步信号用于触发进行记录。因此,在我们每次记录时,输入的周期部分将始终完全相同,而噪声会变化。如果我们将一系列触发信号记录加在一起,然后除以我们已获取的记录数,便可以计算出所谓的线性平均值。
由于周期信号将在每个时间记录中精确地重复自身,因此可以平均到其精确值。但是由于每个时间记录中的噪声都不同,因此其趋向于平均为零。我们取的平均值越多,噪声越接近零,便可以继续提高测量的信噪比。上图a展示了淹没在噪声中的方波的时间记录。图c中是经过128次平均后得到的结果,信噪比有了显著提高。将这两个结果都转换到频域 (b、d) 中,可以看出由于降低了本底噪声,现在能够精确地测量出方波信号中对应的谐波数量。
来源:吉兴汽车声学部件科技有限公司微信公众号(ID:gh_ff1a461c24cb),作者:陈晓君。
『点击图片了解活动详情』
▼
更多精彩干货,点击下方关注查看
▼
关注『面包板社区』,后台回复"关键词",领取300 G学习资料包(如:电源、电机、嵌入式、信号系统、模电、华为、电子学、电路、c语言...)
#推荐阅读#
USB 接口电路设计常见问题
画好原理图的技巧
完美通俗解读小波变换,终于懂了小波是什么
电流检测电路
Altium Design PCB拼板完整教程
怎么办?单片机固件又被人破解了~~
示波器接地良好,反而容易炸机?
数学之美:谈Smith圆图
硬件知识“三重奏”
▼点击阅读原文,下载《离散时间信号处理(第三版)》