什么是传感器融合?我们从“盲人摸象”讲起……

安富利 2021-09-16 18:00


本期导读

作为现代科技发展的主要标志之一,传感器技术和计算机技术、通信技术一道被称为现代信息产业的三大支柱。随着传感器应用愈发广泛,单个传感器已经无法满足使用要求,“传感器融合”应运而生。那什么是“传感器融合”呢?传感器如何融合呢?未来又将如何发展?本文给你答案。


今天,我们的生活高度依赖传感器。传感器作为人类“五感”的延伸,去感知这个世界,甚至可以观察到我们人体感知不到的细节,这种能力也是未来智能化社会所必须的。


不过,单个传感器的性能再卓越,在很多场景中还是无法满足人们要求。比如汽车中昂贵激光雷达可以根据生成的点云,判断出前方有障碍物,但想准确得知这个障碍物是什么,还需要车载摄像头帮忙“看”一眼;如果想感测这个物体的运动状态,可能还需要毫米波雷达来助阵。


这个过程就好比我们熟悉的“盲人摸象”,每个传感器基于自己的特性和专长,只能看到被测对象的某一个方面的特征,而只有将所有特征信息都综合起来,才能够形成更为完整而准确的洞察。这种将多个传感器整合在一起来使用的方法,就是所谓的“传感器融合”



合而为一


对于传感器融合,一个比较严谨的定义是:利用计算机技术将来自多传感器或多源的信息和数据,在一定的准则下加以自动分析和综合,以完成所需要的决策和估计而进行的信息处理过程。这些作为数据源的传感器可以是相同的(同构),也可以是不同的(异构),但它们并不是简单地堆砌在一起,而是要从数据层面进行深度地融合。


实际上,传感器融合的例子在我们生活中已经屡见不鲜。归纳起来,使用传感器融合技术的目的主要有三类:


#1

获得全局性的认知。单独一个传感器功能单一或性能不足,加在一起才能完成一个更高阶的工作。比如我们熟悉的9轴MEMS运动传感器单元,实际上就是3轴加速传感器、3轴陀螺仪和3轴电子罗盘(地磁传感器)三者的合体,通过这样的传感器融合,才能获得准确的运动感测数据,进而在高端VR或其他应用中为用户提供逼真的沉浸式体验。

#2

细化探测颗粒度。比如在地理位置的感知上,GPS等卫星定位技术,探测精度在十米左右且在室内无法使用,如果我们能够将Wi-Fi、蓝牙、UWB等局域定位技术结合进来,或者增加MEMS惯性单元,那么对于室内物体的定位和运动监测精度就能实现数量级的提升。

#3

实现安全冗余。这方面,自动驾驶是最典型的例子,各个车载传感器获取的信息之间必须互为备份、相互印证,才能做到真正的安全无虞。比如当自动驾驶级别提升到L3以上时,就会在车载摄像头的基础上引入毫米波雷达,而到了L4和L5,激光雷达基本上就是标配了,甚至还会考虑将通过V2X车联网收集的数据融合进来。


图1:自动驾驶中使用的多种车载传感器示例(图片来源:网络)


总之,传感器融合技术恰似一个“教练”,能够将性能各异的传感器捏合成一个团队,合而为一又相互取长补短,共同去赢得一场比赛。


融合之道


选定了需要融合的传感器,怎么融合则是下一步要考虑的问题。传感器融合的体系结构,按照融合的方式分为三种:


集中式

集中式传感器融合就是将各个传感器获得的原始数据,直接送至中央处理器进行融合处理,这样做的好处是精度高、算法灵活,但是由于需要处理的数据量大,对中央处理器的算力要求更高,还需要考虑到数据传输的延迟,实现难度大。

分布式

所谓分布式,就是在更靠近传感器端的地方,先对各个传感器获得的原始数据进行初步处理,然后再将结果送入中央处理器进行信息融合计算,得到最终的结果。这种方式对通信带宽的需求低、计算速度快、可靠性好,但由于会对原始数据进行过滤和处理,会造成部分信息的丢失,因此原理上最终的精度没有集中式高。

混合式

顾名思义,就是将以上两种方法相结合,部分传感器采用集中式融合方式,其他的传感器采用分布式融合方式。由于兼顾了集中式融合和分布式的优点,混合式融合框架适应能力较强,稳定性高,但是整体的系统结构会更复杂,在数据通信和计算处理上会产生额外的成本。


对于传感器融合方案,还有一种按照数据信息处理阶段进行分类的思路。一般来说,数据的处理要经过获取数据、特征提取、识别决策三个层级,在不同的层级进行信息融合,策略不同,应用场景不同,产生的结果也不同。


按照这种思路,可以将传感器融合分为数据级融合、特征级融合和决策级融合。


数据级融合

就是在多个传感器采集数据完成后,就对这些数据进行融合。但是数据级融合处理的数据必须是由同一类传感器采集的,不能处理不同传感器采集的异构数据。

特征级融合

从传感器所采集的数据中提取出能够体现监测对象属性的特征向量,在这个层级上对于监测对象特征做信息融合,就是特征级融合。这种方式之所以可行,是由于部分关键的特征信息,可以来代替全部数据信息。

决策级融合

在特征提取的基础上,进行一定的判别、分类,以及简单的逻辑运算,做出识别判断,在此基础上根据应用需求完成信息融合,进行较高级的决策,就是所谓的决策级融合。决策级融合一般都是应用导向的。


如何选择传感器融合的策略和架构,没有一定之规,需要根据具体的实际应用而定,当然也需要综合算力、通信、安全、成本等方面的要素,做出正确的决策。


未来趋势


不论是采用哪种传感器融合架构,你可能都会发现,传感器融合很大程度上是一个软件工作,主要的重点和难点都在算法上。因此,根据实际应用开发出高效的算法,也就成了传感器融合开发工作的重中之重。


在优化算法上,人工智能的引入是传感器融合的一个明显发展趋势。通过人工神经网络,可以模仿人脑的判断决策过程,并具有持续学习进化的可扩展能力,这无疑为传感器融合的发展提供了加速度。


虽然软件很关键,但是在传感器融合过程中,也并非没有硬件施展拳脚的机会。比如,如果将所有的传感器融合算法处理都放在主处理器上做,处理器的负荷会非常大,因此近年来一种比较流行的做法是引入传感器中枢(Sensor Hub),它可以在主处理器之外独立地处理传感器的数据,而无需主处理器参与。这样做,一方面可以减轻主处理器的负荷,另一方面也可以通过减少主处理器工作的时间降低系统功耗,这在可穿戴和物联网等功耗敏感型应用中,十分必要。


图2,传感器中枢示例:在这个健康可穿戴传感器系统中,MAX32664作为传感器中枢可以对光学和运动传感器的数据信息进行融合处理(图片来源:Maxim Integrated)


有市场研究数据显示,对传感器融合系统的需求将从2017年的26.2亿美元增长到2023年的75.8亿美元,复合年增长率约为19.4%。可以预判,未来传感器融合技术和应用的发展将呈现出两个明显的趋势:


  • 自动驾驶的驱动下,汽车市场将是传感器融合技术最重要的赛道,并将由此催生出更多的新技术和新方案。


  • 此外,应用多元化的趋势也将加速,除了以往那些对于性能、安全要求较高的应用,在消费电子领域传感器融合技术将迎来巨大的发展空间。


总之,传感器融合为我们洞察这个世界提供了更有效的方法,让我们远离“盲人摸象”般的尴尬,进而在这个洞察力的基础上,塑造更智能的未来。


互动话题

你知道我们的手机里面

融合多少种类的传感器吗?

它们又各起到了什么作用?

文末留言与我们互动吧!


我们将选择2名优质留言,分别送出50元京东卡一张


另外,如果我们本期文章“在看”数超过50个,获奖人数将从2名增加到4名!快快行动起来吧!


恭喜上期“谁才是自动驾驶的最终答案”的获奖用户:

蜗牛、媛秋

(微信昵称)


*请以上获奖用户于七日内在当期文章中留言申请领奖,否则视为主动放弃


*活动最终解释权归安富利所有



  往期推荐  





安富利 安富利助您将今日构思转化为明日科技.我们帮助初创企业设计和制造,让这些技术梦想家准备好成长为新的大型企业;也为需要全球供货的合同制造商和OEM制造商提供优质产品与支持.
评论
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 91浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 65浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 163浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 119浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 76浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 66浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 65浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 160浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦