Linux如何从Boot到OS,再到应用程序?

嵌入式客栈 2021-09-16 17:55

目录

  • bootloader 跳转到操作系统

  • 操作系统跳转到应用程序

  • 应用程序调用操作系统中的函数

不论是在 x86 平台上,还是在嵌入式平台上,系统的启动一般都经历了 bootloader操作系统,再到应用程序,这样的三级跳过程。

每一个相互交接的过程,都是我们学习的重点。

这篇文章,我们仍然以 x86 平台为例,一起来看一下:从上电之后,系统是如何一步一步的进入应用程序的入口地址

bootloader跳转到操作系统

在上一篇文章中,讨论了 bootloader 在进入保护模式之后,在地址 0x0001_0000 处创建了全局描述符表(GDT),表中创建了 3 个段描述符:

只要在 GDT 中创建了这 3 个描述符,然后把 GDT 的地址(eg: 0x0001_0000)设置到 GDTR 寄存器中,此时就可以进入保护模式工作了(设置 CR0 寄存器的 bit01)。

之前的第 6 篇文章中Linux从头学06:16张结构图,彻底理解【代码重定位】的底层原理,我们是假设 bootloader 把操作系统程序读取到内存 0x0002_0000 的位置,这里继续使用这个示例:

关于文件头 header 的内容,与实模式下是不同的。

在实模式下,header 的布局如下图:

bootloader 在把操作系统,从硬盘加载到内存中之后,从 header 中取得 3 个段的汇编地址(即:段的开始地址相对于文件开始的偏移量),然后计算得到段的基地址,最后把段基地址写回到 header 的这 3 个段地址空间中。

这样的话,操作系统开始执行时,就可以从 header 中准确的获取到每一个段的基地址了,然后就可以设置相应的段寄存器,进入正确的执行上下文了。

那么在保护模式下呢,操作系统需要的就不是段的基地址了,而是要获取到每一个段的描述符才行。

很显然,需要借助 bootloader 才可以完成这个目标,也就是:

  1. 在 GDT 中为操作系统程序中的三个段,建立相应的描述符;

  2. 把每一个段的描述符索引号,写回到操作系统程序的 header 中;

注意:

这里描述的仅仅是一个可能的过程,主要用来理解原理。

有些系统可以用不同的实现方式,例如:在进入操作系统之后,在另外一个位置存放 GDT,并重新创建其中的段描述符。

操作系统的 header 布局

既然 header 需要作为媒介,来接收 bootloader 往其中写入段索引号,所以 bootloaderOS 就要协商好,写在什么位置?

可以按照之前的方式,直接覆写在每个段的汇编地址位置,也可以写在其他的位置,例如:

其中,最后的 3 个位置可以用来接收操作系统的三个段索引号。

建立操作系统的三个段描述符

bootloaderOS 加载到内存中之后,会解析 OSheader 中数据,得到每个段的基地址以及界限

虽然 header 中没有明确的记录每个段的界限,可以根据下一个段的开始地址,来计算得到上一个段的长度。

我们可以联想一下:

现代 Linux 系统中 ELF 文件的格式,在文件头部中记录了每一个段的长度,具体解析请参考这篇文章:Linux系统中编译、链接的基石-ELF文件:扒开它的层层外衣,从字节码的粒度来探索。

此时,bootloader 就可以利用这几个信息:段基地址、界限、类型以及其他属性,来构造出相应的段描述符了(下图橙色部分):

PS:这里的示例只为操作系统创建了 3 个段描述符,实际情况也许有更多的段。

OS 段描述符建立之后,bootloader 再把这 3 个段描述符在 GDT 中的索引号,填写到 OSheader 中相应的位置:

上图中,“入口地址”下面的那个 4,本质上是不需要的,加上更有好处,好处如下:

当从 bootloader 跳入到操作系统的入口地址时,需要告诉处理器两件事情:

  1. 代码段的索引号;

  2. 代码的入口地址;

因此,把入口地址和索引号放在一起,有助于 bootloader 直接使用跳转语句,进入到 OSstart 标记处开始执行。

操作系统跳转到应用程序

从现代操作系统来看,这个标题是有错误的:

操作系统是应用程序的下层支撑,相当于是应用程序的 runtime,怎么能叫做跳转到应用程序呢?

其实我想表达的意思是:操作系统是如何加载、执行一个应用程序的。

既然是保护模式,那么操作系统就承担起重要的职责:保护系统不会受到每一个应用程序的恶意破坏!

因此,操作系统:把应用程序从硬盘上复制到内存中之后,跳入应用程序的第一条指令之前,需要为应用程序分配好内存资源:

  1. 代码段的基地址、界限、类型和权限等信息;

  2. 数据段的基地址、界限、类型和权限等信息;

  3. 栈段的基地址、界限、类型和权限等信息;

以上这些信息,都以段描述符的形式,创建在 GDT 中。

PS: 在现代操作系统中,应用程序都会有一个自己私有的局部描述符表 LDT,专门存储应用程序自己的段描述符。

还记得之前讨论过的下面这张图吗?

段寄存器的 bit2TI 标志,就说明了需要到 GDT 中查找段描述符?还是到 LDT 中去查找?

为了方便起见,我们就把所有的段描述符都放在 GDT 中。

就犹如 bootloaderOS 创建段描述符一样,OS 也以同样的步骤为应用程序来创建每一个段描述符。

此时的 GDT 就是下面这样:

从这张图中已经可以看出一个问题了:

如果所有应用程序的段描述符都放在全局的 GDT 中,当应用程序结束之后,还得去更新 GDT,势必给操作系统的代码带来很多麻烦。

因此,更合理的方式应该是放在应用程序私有的 LDT 中,这个问题,以后还会进一步讨论到。

不管怎样,OS 启动应用程序的整体流程如下:

  1. 操作系统把应用程序读取到内存中的某个空闲位置;

  2. 操作系统分析应用程序 header 部分的信息;

  3. 操作系统为应用程序创建每一个段描述符,并且把索引号写回到 header 中;

  4. 跳转到应用程序的入口地址,应用程序从 header 中获取到每个段索引号,设置好自己的执行上下文(即:设置好各种寄存器);

应用程序调用操作系统函数

这里的函数可以理解成系统调用,也就是操作系统为所有的应用程序提供的公共函数。

Linux 系统中,系统调用是通过中断来实现的,在中断处理器程序中,再通过一个寄存器来标识:当前应用程序想调用哪一个系统函数,也就是说:每一个系统函数都有一个固定的数字编号

再回到我们当前讨论的 x86 处理器中,操作系统提供系统函数的最简单的方法就是:

把所有的系统函数都放在一个单独的代码段中,把这个段的索引号以及每一个系统函数的偏移地址告诉应用程序。

这样的话,应用程序就可以通过这 2 个信息调用到系统函数了。

假如:有 2 个系统函数 os_func1 和  os_func2,放在一个独立的段中:

既然 OS 中多了一个代码段,那么 bootloader 就需要帮助它在 GDT 中多创建一个段描述符:

在应用程序的 header 中,预留一个足够大的空间来存放每一个系统函数的跳转信息(系统函数的段索引号和函数的偏移地址):

应用程序有了这个信息之后,当需要调用 os_func1 时,就直接跳转到相应的 段索引号:函数偏移地址,就可以调用到这个系统函数了。

这里同样的会引出 2 个问题:

  1. 如果操作系统提供的系统函数很多,应用程序也很多,那么操作系统在加载每一个应用程序时,岂不是要忙死了?而且应用程序也不知道应该保留多大的空间来存放这些系统函数的跳转信息;

  2. 在执行系统函数时,此时代码段、数据段都是属于操作系统的势力范围,但是栈基址和栈顶指针使用的仍然是应用程序拥有的栈,这样合理吗?

对于第一个问题,所以 Linux 中通过中断,提供一个统一的调用入口地址,然后通过一个寄存器来区分是哪一个函数。

对于第二个问题,Linux 在加载每一个应用程序时,会在内核中建立与该应用程序相关的数据结构,并且在内核中创建一块内存空间,专门用作:从这个应用程序跳转到内核中执行代码时,所使用的栈空间。

------ End ------

bootloader 到操作系统,再到应用程序,这个三级跳的最简流程就讨论结束了。

—— The End —


推荐阅读  点击蓝色字体即可跳转
☞ QT容器很香之QList<T>实战举例
☞ 步进电机调速,S曲线调速算法你会吗?
 图文详解Modbus-RTU协议
 RS-485总线,这篇很详细

欢迎转发、留言、点赞、分享,感谢您的支持!

嵌入式客栈 欢迎关注嵌入式客栈,主要分享嵌入式Linux系统构建、嵌入式linux驱动开发、单片机技术、FPGA开发、信号处理、工业通讯等技术主题。欢迎关注,一起交流,一起进步!
评论
  • 数字隔离芯片是现代电气工程师在进行电路设计时所必须考虑的一种电子元件,主要用于保护低压控制电路中敏感电子设备的稳定运行与操作人员的人身安全。其不仅能隔离两个或多个高低压回路之间的电气联系,还能防止漏电流、共模噪声与浪涌等干扰信号的传播,有效增强电路间信号传输的抗干扰能力,同时提升电子系统的电磁兼容性与通信稳定性。容耦隔离芯片的典型应用原理图值得一提的是,在电子电路中引入隔离措施会带来传输延迟、功耗增加、成本增加与尺寸增加等问题,而数字隔离芯片的目标就是尽可能消除这些不利影响,同时满足安全法规的要
    华普微HOPERF 2025-01-15 09:48 79浏览
  • 根据Global Info Research(环洋市场咨询)项目团队最新调研,预计2030年全球无人机电池和电源产值达到2834百万美元,2024-2030年期间年复合增长率CAGR为10.1%。 无人机电池是为无人机提供动力并使其飞行的关键。无人机使用的电池类型因无人机的大小和型号而异。一些常见的无人机电池类型包括锂聚合物(LiPo)电池、锂离子电池和镍氢(NiMH)电池。锂聚合物电池是最常用的无人机电池类型,因为其能量密度高、设计轻巧。这些电池以输出功率大、飞行时间长而著称。不过,它们需要
    GIRtina 2025-01-13 10:49 182浏览
  • 随着通信技术的迅速发展,现代通信设备需要更高效、可靠且紧凑的解决方案来应对日益复杂的系统。中国自主研发和制造的国产接口芯片,正逐渐成为通信设备(从5G基站到工业通信模块)中的重要基石。这些芯片凭借卓越性能、成本效益及灵活性,满足了现代通信基础设施的多样化需求。 1. 接口芯片在通信设备中的关键作用接口芯片作为数据交互的桥梁,是通信设备中不可或缺的核心组件。它们在设备内的各种子系统之间实现无缝数据传输,支持高速数据交换、协议转换和信号调节等功能。无论是5G基站中的数据处理,还是物联网网关
    克里雅半导体科技 2025-01-10 16:20 444浏览
  • 随着数字化的不断推进,LED显示屏行业对4K、8K等超高清画质的需求日益提升。与此同时,Mini及Micro LED技术的日益成熟,推动了间距小于1.2 Pitch的Mini、Micro LED显示屏的快速发展。这类显示屏不仅画质卓越,而且尺寸适中,通常在110至1000英寸之间,非常适合应用于电影院、监控中心、大型会议、以及电影拍摄等多种室内场景。鉴于室内LED显示屏与用户距离较近,因此对于噪音控制、体积小型化、冗余备份能力及电气安全性的要求尤为严格。为满足这一市场需求,开关电源技术推出了专为
    晶台光耦 2025-01-13 10:42 498浏览
  • 流量传感器是实现对燃气、废气、生活用水、污水、冷却液、石油等各种流体流量精准计量的关键手段。但随着工业自动化、数字化、智能化与低碳化进程的不断加速,采用传统机械式检测方式的流量传感器已不能满足当代流体计量行业对于测量精度、测量范围、使用寿命与维护成本等方面的精细需求。流量传感器的应用场景(部分)超声波流量传感器,是一种利用超声波技术测量流体流量的新型传感器,其主要通过发射超声波信号并接收反射回来的信号,根据超声波在流体中传播的时间、幅度或相位变化等参数,间接计算流体的流量,具有非侵入式测量、高精
    华普微HOPERF 2025-01-13 14:18 482浏览
  • PNT、GNSS、GPS均是卫星定位和导航相关领域中的常见缩写词,他们经常会被用到,且在很多情况下会被等同使用或替换使用。我们会把定位导航功能测试叫做PNT性能测试,也会叫做GNSS性能测试。我们会把定位导航终端叫做GNSS模块,也会叫做GPS模块。但是实际上他们之间是有一些重要的区别。伴随着技术发展与越发深入,我们有必要对这三个词汇做以清晰的区分。一、什么是GPS?GPS是Global Positioning System(全球定位系统)的缩写,它是美国建立的全球卫星定位导航系统,是GNSS概
    德思特测试测量 2025-01-13 15:42 491浏览
  • 食物浪费已成为全球亟待解决的严峻挑战,并对环境和经济造成了重大影响。最新统计数据显示,全球高达三分之一的粮食在生产过程中损失或被无谓浪费,这不仅导致了资源消耗,还加剧了温室气体排放,并带来了巨大经济损失。全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,艾迈斯欧司朗基于AS7341多光谱传感器开发的创新应用来解决食物浪费这一全球性难题。其多光谱传感解决方案为农业与食品行业带来深远变革,该技术通过精确判定最佳收获时机,提升质量控制水平,并在整个供应链中有效减少浪费。 在2024
    艾迈斯欧司朗 2025-01-14 18:45 61浏览
  • ARMv8-A是ARM公司为满足新需求而重新设计的一个架构,是近20年来ARM架构变动最大的一次。以下是对ARMv8-A的详细介绍: 1. 背景介绍    ARM公司最初并未涉足PC市场,其产品主要针对功耗敏感的移动设备。     随着技术的发展和市场需求的变化,ARM开始扩展到企业设备、服务器等领域,这要求其架构能够支持更大的内存和更复杂的计算任务。 2. 架构特点    ARMv8-A引入了Execution State(执行状
    丙丁先生 2025-01-12 10:30 466浏览
  •   在信号处理过程中,由于信号的时域截断会导致频谱扩展泄露现象。那么导致频谱泄露发生的根本原因是什么?又该采取什么样的改善方法。本文以ADC性能指标的测试场景为例,探讨了对ADC的输出结果进行非周期截断所带来的影响及问题总结。 两个点   为了更好的分析或处理信号,实际应用时需要从频域而非时域的角度观察原信号。但物理意义上只能直接获取信号的时域信息,为了得到信号的频域信息需要利用傅里叶变换这个工具计算出原信号的频谱函数。但对于计算机来说实现这种计算需要面对两个问题: 1.
    TIAN301 2025-01-14 14:15 108浏览
  • 01. 什么是过程能力分析?过程能力研究利用生产过程中初始一批产品的数据,预测制造过程是否能够稳定地生产符合规格的产品。可以把它想象成一种预测。通过历史数据的分析,推断未来是否可以依赖该工艺持续生产高质量产品。客户可能会要求将过程能力研究作为生产件批准程序 (PPAP) 的一部分。这是为了确保制造过程能够持续稳定地生产合格的产品。02. 基本概念在定义制造过程时,目标是确保生产的零件符合上下规格限 (USL 和 LSL)。过程能力衡量制造过程能多大程度上稳定地生产符合规格的产品。核心概念很简单:
    优思学院 2025-01-12 15:43 522浏览
  • 新年伊始,又到了对去年做总结,对今年做展望的时刻 不知道你在2024年初立的Flag都实现了吗? 2025年对自己又有什么新的期待呢? 2024年注定是不平凡的一年, 一年里我测评了50余块开发板, 写出了很多科普文章, 从一个小小的工作室成长为科工公司。 展望2025年, 中国香河英茂科工, 会继续深耕于,具身机器人、飞行器、物联网等方面的研发, 我觉得,要向未来学习未来, 未来是什么? 是掌握在孩子们生活中的发现,和精历, 把最好的技术带给孩子,
    丙丁先生 2025-01-11 11:35 457浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦