干货 | 改进UNet分析~~~~~~

OpenCV学堂 2021-09-14 23:20

本文提出了一种新的医学图像分割框架UCTransNet,该模型中设计了一个CTrans模块,性能提升明显。整体性能优于Swin-UNet、TransUNet等网络。
作者单位:东北大学、阿尔伯塔大学

1简介

最近的很多医疗语义分割方法都采用了带有编解码器结构的U-Net框架。但是U-Net采用简单的跳跃连接方案对于全局多尺度问题进行建模仍然具有挑战性:

  1. 由于编解码器阶段特征集不兼容,并不是每个跳跃连接设置都是有效的,甚至一些跳跃连接会对分割性能产生负面影响;

  2. 原有的U-Net在某些数据集上比没有跳过连接的U-Net更差。

基于研究结果,作者提出了一个新的细分框架UCTransNet(在U-Net中提出了一个CTrans模块),从通道注意力机制的视角出发。

具体来说,CTrans(Channel Transformer))模块是U-Net skip connections的替代,其中一个子模块用于与Transformer进行多尺度通道交叉融合(CCT),另一个子模块Channel-wise Cross-attention(CCA)用于引导融合的多尺度通道信息与解码器特征有效连接以消除歧义。

因此,本文提出的由CCT和CCA组成的连接能够代替原有的skip connections,解决语义空白,实现精确的医学图像自动分割。

实验结果表明,UCTransNet可以得到更精确的分割性能,并在不同数据集和传统架构(包括transformer或U-Shape框架)的语义分割方面取得了一致的改进。

本文主要贡献:

  1. 分析了skip connections在多个数据集上的有效性,表明独立简单复制是不合适的。
  2. 提出了一个新的视角来提高语义分割的性能,即通过更有效的特征融合和多尺度的通道交叉注意力来弥补low-level和high-level特征之间的语义和分辨率差距,以捕获更复杂的通道依赖。
  3. UCTransNet是第一个从通道角度重新思考Transformer自注意力机制的方法。与其他先进的分割方法相比,实验结果在公共数据集上都有更好的性能。

2Skip connection的分析

图3

发现 1

没有任何Skip connection的U-net甚至比原来的U-net更好。比较图3,可以发现“U-Net-none”在几乎所有参数的算法中表现最差MoNuSeg数据集。然而,“U-Net-none”,尽管没有任何限制,仍然在Glas数据集上取得了与“U-Net-all”非常有竞争力的性能。它表明Skip connection并不总是对语义分割有益。

发现 2

尽管UNet-all比UNet-none性能更好,但并不是所有简单复制的Skip connection都对语义分割有用。每个Skip connection的贡献是不同的。作者发现,在MoNuSeg数据集上,每个Skip connection的性能范围分别为[67.5%,76.44%]和[52.2%,62.73%]。对于不同的single skip connection,冲击变化较大。

此外,由于编码器和解码器阶段的特征集不兼容的问题,一些skip connection对分割性能有负面影响。例如,L1在Glas数据集上的Dice和IOU方面的表现比UNet-none差。这个结果并不能证明来自编码器阶段的许多特性是不能提供信息的。其背后的原因可能是简单的复制不适合特征融合。

发现 3

对于不同的数据集,skip connection的最佳组合是不同的,这取决于目标病变的规模和外观。作者进行了几个消融实验,以探索最佳侧输出设置。

注意,由于空间有限,作者忽略了两个skip connection的组合。

可以看到,skip connection并没有获得更好的性能,没有L4的模型在MoNuSeg数据集上表现最好,而令人惊讶的是,只有一个skip connection的L3在GlaS数据集上表现最好。这些观察结果表明,不同数据集的最佳组合是不同的。这进一步证实了在特征融合中引入更合适的动作而不是简单的连接的必要性。

3UCTransNet用于医学图像分割

图2 UCTransNet框架

图2展示了UCTransNet框架的概述。目前基于transformer的分割方法主要是针对U-Net的编码器进行改进,因为U-Net具有捕获远程信息的优势。这些方法,如TransUNet或TransFuse,以简单的方式将Transformer与U-Net融合,即将Transformer模块插入编码器或融合两个独立分支。但是,作者认为目前U-Net模型的潜在限制是skip connection的问题,而不是原始U-Net的编码器的问题,这足以满足大多数任务。

如skip connection分析部分所述,作者观察到编码器的特征与解码器的特征不一致,即在某些情况下,由于浅层编码器与解码器之间存在语义差异,语义信息较少的浅层特征可能会通过简单的skip connection损害最终性能。受此启发,作者通过在普通U-Net编码器和解码器之间设计一个通道化的Transformer模块来构建UCTransNet框架,以更好地融合编码器特性,减少语义差距。

具体来说,本文提出了一种通道转换器(Channel Transformer, CTrans)来替代U-Net中的skip connection,它由两个模块组成:用于多尺度编码器特征融合的CCT(Channel-wise Cross Fusion Transformer)和用于解码器特征与增强CCT特征融合的CCA(Channel-wise Cross Attention)。

4CCT

为了解决前面提到的skip connection问题提出了一种新的通道交叉融合Transformer(CCT),利用Transformer的长依赖建模优势融合多尺度编码器特征。CCT模块包括3个步骤:

  • 多尺度特征嵌入
  • 多通道交叉注意力
  • 多层感知器(MLP)

给定4个skip connection层的输出,首先对特征进行token化,将特征reshape为patch大小分别为{}的flattend 2D patch序列,使这些patch可以在4种尺度下映射到编码器特征的相同区域。在这个过程中,保持原来的通道尺寸。然后,连接4个层的Token ; 作为key和作为value。

5Multi-head Cross-Attention

token被输入到多头通道交叉注意力模块,然后是具有残差结构的多层感知器(MLP),以编码通道关系和依赖,使用多尺度特征从每个U-Net编码器级别提取特征。

图5

如图5所示,本文提出的CCT模块包含5个输入,其中4个token 作为query,一个连接token 作为key和value:

其中;;为不同输入的权值,d为序列长度(patch编号),为4个skip connection层的通道尺寸。在实现中;;;

;;,产生相似矩阵, 通过交叉注意力(CA)机制对V进行加权:

其中分别表示实例归一化和softmax函数。

图4

与原始自注意力的主要区别在于,本文沿着通道轴而不是patch轴进行注意力操作(见图4),并且在相似图上使用实例归一化,使得梯度可以平滑地传播。在N头注意力情况下,多头交叉注意力后的输出计算如下:

N是Head数。下面,应用简单的MLP和残差算子,得到输出如下:

为简便起见,在方程中省略了层标准化(LN)。将式(4)中的操作重复L次,构建L层变压器。在实现中,N和L都被设置为4。最后,对第l层的4个输出进行上采样重构,再进行卷积层重构,并分别与解码器特征连接。

6CCA

为了更好地融合Channel Transformer与U-Net解码器之间语义不一致的特征,本文提出了一个面向通道的交叉注意力模块,该模块可以指导Channel和information filtering of the Transformer特征,消除与解码器特征的歧义。

数学上,将第级Transformer输出和第级解码器特征映射作为通道交叉注意力的输入。空间压缩由全局平均池化(GAP)层执行,产生向量及其第k个通道。使用这个操作来嵌入全局空间信息,然后生成注意力Mask:

其中和为2个线性层和ReLU算子的权重。Eq.(5)中的这个操作对通道依赖进行编码。根据ECA-Net的经验表明,避免降维对学习通道注意力很重要,使用单一线性层和s形函数来构建通道注意力图。结果向量用于重新校准或激发,其中激活表示每个通道的重要性。最后,将mask的与第i级解码器的上采样特征连接起来。

7实验

表1报告了实验结果,其中最好的结果用粗体表示。表1显示,本文的方法具有一致的改进之前的效果,如Glas数据集,与基于Transformer模型相比性能分别提升2.42%(3.59%),4.05%(7.07%)的Dice (IoU)较U-Net基础模型和从1.80%(2.98%),3.65%(6.12%)。

在表2中,可以做类似的观察和结论,这再次验证了UCTransNet优于其他所有公司。此外,预训练方案不仅收敛速度更快,而且在MoNuSeg数据集上取得了比其他方法更好的性能,甚至优于联合学习方案。这些观察结果表明,这两个提出的模块可以纳入预先训练的U-Net模型,以提高分割性能。

图6
图7

对比模型的分割结果图6和图7。红框突出显示UCTransNet比其他方法表现更好的区域。结果表明,UCTransNet可以产生更好的分割结果,与Baseline模型的分割结果相比,UCTransNet的分割结果更接近ground truth。可以看出,提出的方法不仅突出了右侧显著区域,消除了混淆的假阳性病变,而且产生了连贯的边界。这些观察结果表明UCTransNet能够在保留详细形状信息的同时进行更精细的分割。

如表3所示,在所有数据集上,“Base+CCT+CCA”总体上优于其他Baseline。通过将CCT和CCA集成到U-Net在Dice和IoU方面分别提高了1.12%和1.22%,说明了两个模块组合的有效性。研究结果揭示了多尺度多通道特征融合在编码器-解码器框架中对提高分割性能的重要性。

8参考

[1].UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer

OpenCV学堂 专注计算机视觉开发技术分享,技术框架使用,包括OpenCV,Tensorflow,Pytorch教程与案例,相关算法详解,最新CV方向论文,硬核代码干货与代码案例详解!作者在CV工程化方面深度耕耘15年,感谢您的关注!
评论
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 233浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 560浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 90浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 204浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 115浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 128浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 198浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 85浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 173浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 221浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 191浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 169浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 81浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦