基于 VPX 架构基础平台背板信号完整性设计

射频百花潭 2021-09-14 00:00

    VPX 架构基于 VME 总线技术发展而来,是由 VITA 协会推出和维护的国际标准总线架构。从板材选型、叠层结构、关键信号线及 PCB 工艺等各方面进行分析设计,提出 VPX 机箱背板 PCB 信号完整性设计方案。

    VPX 架构是目前主流的模块化、通用化、开放式机箱架构,基于 VME 总线技术发展而来,它是由VITA 协会推出和维护的国际标准总线架构。基础平台以“功能模块化、集成总线化、测试自动化”为设计理念,打造方便、易用的统一集成架构,可按需配置,堆叠扩展。背板是基础平台所有功能模块互联的基础,信号的质量对 VPX 机箱工作的稳定性具有决定性的作用,因此背板 PCB 信号完整性是基础平台设计的重点。为了解决背板的反射、串扰以及电源干扰等信号完整性问题,机箱背板在板材选型、叠层结构、关键信号线及 PCB 工艺等方面进行了精心设计,并通过信号完整性仿真及功能性能测试。


1 信号完整性设计


1.1 板材选型及叠层结构设计

PCB 板材及叠层结构是信号完整性的一个重要要素。机箱背板采用 FR4-TG170 板材,比 FR4-TG130 具有更高的玻璃态转化温度,耐燃性更好,并通过指定供应商选取介电常数不大于 4.4 的板材,以减少串扰发生时传递的能量。背板板厚设计为 5.4 mm,在优先考虑信号走线质量的情况下综合考虑了成本及加工难易度。背板叠层采用 14 层板,叠层结构如图 1 所示。

图 1 背板叠层结构示意图
其中,CS 表示顶层,SS 表示底层,L1 表示内层第 1 层,其他层以此类推。各层信号设计及说明如下。

(1)CS。顶层,排放插座及主要器件,尽量不走关键信号线,且其余信号走线尽快入内层,保证EMC 性能。

(2)L1。地层,主要网络为 GND,为顶层及L2 层提供完整的参考平面。(3)L2。关键信号层,敏感信号和关键信号均可在这层走线。

(4)L3。地层,主要网络为 GND,为 L2 及 L4层提供完整的参考平面。

(5)L4。关键信号层,敏感信号和关键信号均可在该层走线。

(6)L5。地层,主要网络为 GND,为 L4 层提供完整的参考平面,为 L6 提供地层。

(7)L6。电源层,主要网络为 12 V 和 3.3 V 辅助电源。此层的相邻层有地层,以保证更好的电源完整性。

(8)L7。次关键信号层,由于此层其中的一个参考平面为分割了的电源层,因此此层将进行次关键信号的走线。

(9)L8。地层,主要网络为 GND,为 L7 及 L9层提供完整的参考平面。

(10)L9。关键信号层,敏感信号和关键信号均可在该层走线。

(11)L10。地层,主要网络为 GND,为 L9 及L11 层提供完整的参考平面。

(12)L11。关键信号层,敏感信号和关键信号均可在该层走线。

(13)L12。地层,主要网络为 GND,为 L11 及底层提供完整的参考平面。

(14)SS。底层,排放插座及次要器件,尽量不走关键信号线,且其余信号走线应尽快入内层,保证 EMC 性能。

通过设计以上叠层结构,机箱背板的所有信号走线都有完整的参考平面,保证了信号线的阻抗连续性,关键信号甚至有两层参考平面,使信号屏蔽性和抗干扰能力得到进一步提升;同时,不存在相邻两层间信号串扰现象,且关键信号均在内层布线,减少了远端串扰的影响;L6 电源层有相邻的L5 底层,也满足电源完整性要求。

1.2 关键信号线分类及设计

机箱背板存在 5 种总线,分别是交换总线、配置管理总线、时分总线、时统总线及友邻总线。其中,交换总线和友邻总线的接口形式相同,按相同信号特性进行设计;时分总线和时统总线的接口形式相同,按相同信号特性进行设计。通过对 3 种信号线进行分类设计,解决机箱背板各种总线的信号完整性问题。

时 分 总 线 网 络 标 号 为 ST_CLK1+/-、ST_FS1+/-、ST_OUT1+/-、ST_CLK2+/-、ST_FS2+/-以及 ST_OUT2+/-;时统总线网络标号为 PPS+/-、GLOBAL_CLK+/- 以及 TOD+/-。这些信号均为差分信号,电平特性为 M-LVDS 电平。M-LVDS 为多点低电压差分信号,可以使多个驱动器或接收器共享同一个物理链路,支持高达 250 Mb·s -1 的数据通信。为了解决信号完整性问题,时分总线和时统总线设计遵循如下原则 。

(1)总线源端及末端就近摆放一个 100 Ω 端接电阻,以最大限度地吸收反射信号。

(2)总线的走线长度不能超过 508 mm,为芯片的驱动能力保留充足的裕量。

(3)每个过孔的出现都会使信号阻抗出现不连续的现象,因此总线在布线时打过孔尽量不要超过 2 个,减少由过孔带来的寄生电容,并在过孔附近就近打接地过孔,为交流信号提供最短的回流路径。

(4)总线需和其他网络保持 0.508 mm 以上的间距,采取 3W 原则,最大程度地减少其他信号对时分总线和时统总线的串扰。

(5)总线的走线一直伴随有完整的参考平面,保证总线信号有最短的回流路径,同时保证信号线的特征阻抗不会发生突变。

(6)差分线的特征阻抗设计为 100 Ω。

配置管理总线网络标号为 SM0、SM1、SM2及 SM3,这些信号均为单端信号,物理接口形式为I 2 C,总线速率为 400 kb·s -1 ,为了解决信号完整性问题,配置管理总线遵循如下设计原则。

(1)总线源端及末端采用就近上拉一个 4.7 K电阻的端接方式,提高总线的驱动能力并吸收一部分反射。

(2)总线的走线长度不能超过 508 mm,为芯片的驱动能力保留充足的裕量。

(3)单端信号线的特征阻抗设计为 65 Ω。

交换总线和友邻总线信号均为高速差分信号,遵循如下设计原则。

(1)差分线在布线时打过孔尽量不要超过 2个,减少由过孔带来的寄生电容,并在过孔附近就近打接地过孔,为交流信号提供最短的回流路径 .

(2)差分线需和其他网络保持 0.508 mm 以上的间距,采取 3W 原则,差分线的过孔需和其他网络的间距保持 0.305 mm 以上,最大程度地减少其他信号对总线的串扰。

(3)差分线的走线一直伴随有完整的参考平面,保证总线信号有最短的回流路径及保证信号线的特征阻抗不会发生突变;

(4)差分线对内采用严格等长的走线方式,保证差分线对内信号时序稳定。

(5)差分线的特征阻抗设计为 100 Ω。

交换总线和友邻总线的网络标号差分阻抗及等长误差控制如表 1 所示。

表 1 交换总线和友邻总线网络标号表

1.3 PCB 工艺设计

机箱背板采用 14 层板工艺,板厚 5.4 mm,PCB 过孔沉铜塞油,PCB 表面覆盖绿油。为了解决信号完整性问题,背板严格控制了 VPX 插座连接器的孔径公差,同时对高速差分信号采用背钻工艺来减少信号的反射。VPX 插座连接器的孔径示意如图 2 所示。

图 2 VPX 插座连接器孔径示意图
机箱背板 PCB 上 Mechanical12 层标注的孔需要背钻,且背钻深度不可超过 L10 层。背钻工艺如图 3 所示。

图 3 背钻工艺示意图


2 信号完整性仿真


2.1 时统总线和时分总线信号的仿真

背板时统和时分信号采用 MLVD 差分信号,电气特性符合 MLVD 标准 Type1 类型接口的规定,接口输入电压阈值要求如表 2 所示。

表 2 接口输入电压阈值要求

信号规范如图 4 所示。

图 4 背板差分信号规范
采用背板插座 XP40 作为差分信号的驱动端,各功能卡槽位号代表接收芯片,按照 1 驱动 13 的菊花链拓扑结构进行仿真。仿真结果显示,尽管信号满足规范要求,但菊花链拓扑的信号反射会在最靠近驱动端的插座 XP37 处累积,信号质量较差,菊花链末端由于反射小故信号最好。为了优化信号质量,在 XP37 插槽对应的位置靠近接收芯片处并联 130 Ω 电阻,以减少此处的反射。优化前后仿真信号如图 5 所示。从优化后的信号波形可以看出,增加端接电阻后,部分反射被吸收,波形裕量有较大提高。

图 5 背板差分信号仿真优化结果

2.2 交换总线的仿真

背板交换总线采用千兆以太网,符合 IEEE802.3Z 标准(1000BASE-X),信号衰减极限如图 6所示。正常的 1000BASE-X 信号衰减特性必须位于图中极限曲线的上方,离极限曲线越远,信号质量越好。

图 6 1000BASE-X 信号衰减极限
采用背板上走线最长的几组信号进行仿真,其 中 SDS_TP/N28_I(196.028 mm)信 号 仿真结果如图 7 所示。由仿真结果可知,实际背板1000BASE-X 信号衰减远小于门限值,信号质量非常好。

图 7 1000BASE-X 信号仿真结果

3 结 语


通过对 PCB 板材选型、叠层结构、关键信号线以及 PCB 工艺等方面采取多种措施,开展信号完整性设计,有效解决了 VPX 机箱背板各种总线的反射、串扰以及电源干扰等问题,并通过仿真及功能性能测试验证了方法的有效性。(参考文件略)
作者:李晓非;文章来源:电声技术


声明:


本号对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有。

投稿/招聘/推广/宣传 请加微信:15989459034

射频百花潭 国内最大的射频微波公众号,专注于射频微波/高频技术分享和信息传递!
评论
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 227浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 81浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 96浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 78浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 161浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 172浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 72浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 100浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 126浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 127浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 145浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 122浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 209浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 100浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 111浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦