用STM32F072实现的示波器、频谱仪、波形发生器、PWM发生器和直流电压源

原创 电子森林 2021-09-12 12:23



这是一位参加“暑期一起练”活动的同学完成的项目,基于下面的这个平台:

硬禾“暑假一起练”平台4&5 - 产品级的多功能测量掌中宝 - 可自己编程、基于STM32或LPC微处理器

以下是这位同学分享在电子森林项目平台的项目报告(完整的报告以及开源的代码可以点击左下角的“阅读原文”跳转):


写在前面

今年寒假我完成了硬禾学堂的STM32G0简易示波器与信号发生器项目(网址:https://www.eetree.cn/project/detail/167),暑假这次活动的开发板是上次活动的升级版,屏幕换成了彩屏,功能更多,也有了更好看的外壳,于是果断白嫖下单。

本项目中示波器与频谱仪部分代码框架与前述项目基本一致,信号发生器部分改动较大,另外添加了PWM波形发生器和直流电源的功能,作为“口袋仪器”的功能更加完善。

工程中共有7个文件夹:

  • Core:工程核心代码,如main函数,外设初始化函数等;

  • Drivers:stm32的HAL库和LL库驱动;

  • common:不同功能的公用部分,包括按键读取和LCD驱动;

  • dc_source:直流电压源功能的实现代码;

  • pwm:PWM发生器功能的实现代码;

  • scope_spectrum:示波器和频谱仪功能的实现代码;

  • signal_source:波形发生器功能的实现代码。

每个口袋仪器的功能都有自己的主函数(如示波器部分的主函数为scope_main,定义在scope.c中),实现某一项功能时程序只在自己的主函数中循环运行,直到切换至另一功能。

 

1 项目需求

综合性项目 - 实现一个完整的口袋仪器的功能

  • 双通道示波器:采集最大10Vpp、最高100KHz的模拟信号,FFT并频谱显示

  • 波形发生器:正弦波、三角波、方波,频率可调,最高为100KHz,可调输出幅度,最大8Vpp,可调直流偏移,从-4V到+4V

  • PWM发生器,可调频率和占空比

  • 双路可编程直流电压源,-4V到+4V可调,可以设置为独立模式和跟踪模式

  • 2个按键、一个拨轮开关控制菜单的所有操作

  • 240 * 240的LCD显示波形、参数、菜单

 

2 完成的功能及达到的性能

2.1 功能切换

我设计的口袋仪器一共有5个功能/页面,分别为:示波器、频谱仪、波形发生器、PWM发生器、直流电源,长按拨轮可以在这几个页面之间切换。

2.2 示波器页面

波形显示页面如上图所示,页面包含以下信息:

  1. 时间分度值:5ms、2ms、1ms、500us、200us、100us、50us,分别对应采样率3.2kHz、8kHz、16 kHz、32 kHz、80 kHz、160 kHz、320 kHz;

  2. 自动(A)或手动(M)Y轴缩放;

  3. 电压分度值:0.02V、0.04 V、0.1 V、0.16 V、0.2 V、0.24 V、0.3 V、0.36 V、0.4 V、0.5 V、0.8 V、1 V;

  4. 主通道,即Y轴自动缩放和触发功能的基准通道;

  5. 触发边沿:上升沿或者下降沿;

  6. 触发状态及模式:字母代表触发模式(C:连续触发,S:单次触发,X:关闭触发),颜色代表触发状态(红色:触发失败,青绿色:触发成功,棕色:触发关闭);

  7. 波形显示区:显示两个输入通道的波形(CH1:黄色,CH2:绿色);

  8. Y轴电压指示:坐标区顶部、中间和底部的电压值;

  9. 通道开关:CH1开启:黄色,CH2开启:绿色,通道关闭:棕色;

  10. 通道信息:通道直流电压值、电压峰峰值、频率。

除②、⑦、⑧、⑩项以外,其余均可手动调节,按下设备左上方的两个按键可以切换当前选中的项,选中项背景变为灰色,再通过左右调节拨轮可以改变该项的内容,调节完毕后长按左上方两个按键可以取消选中。第②项(Y轴缩放)由手动缩放改为自动缩放的方式为将电压分度值调至1V,再往上调节一档,此时即为自动缩放;由自动缩放改为手动缩放方式为向任意方向调节电压分度值。⑦、⑧、⑩项仅为信息显示,无法手动更改。

按下拨轮可以暂停/继续波形刷新。

2.3 频谱仪页面

频谱显示页面如上图所示,页面包含以下信息:

  1. 信号频谱(CH1:黄色,CH2:绿色);

  2. 频率轴刻度,单位为kHz;

  3. 当前采样率(同示波器);

  4. 通道开关:CH1开启:黄色,CH2开启:绿色,通道关闭:棕色。

其中③、④项可以手动调节,调节方式与示波器的相同,②跟随采样率自动调节。

由于采样率最高为320kHz,根据奈奎斯特采样定理,频谱最高可以显示160kHz的频率分量。

2.4  波形发生器页面

波形发生器页面如上图所示,页面包含以下信息(均可手动调节):

  1. 输出开关;

  2. 波形类型:正弦波、方波、三角波;

  3. 频率:调节范围为0.1kHz至100kHz;

  4. 电压幅值(峰峰值一半):调节范围为0V~4V;

  5. 直流偏移:调节范围为-4V至4V。

2.5 PWM发生器页面

PWM发生器页面如上图所示,页面包含以下信息(均可手动调节):

  1. 输出开关;

  2. 频率:调节范围为1kHz至100kHz;

  3. 占空比:0%至100%。

2.6 直流电源页面

直流电源页面如上图所示,页面包含以下信息(均可手动调节):

  1. 跟踪开关:若开启跟踪,则只能手动调节通道1的参数,通道2跟随通道1自动调整,电压为通道1电压的相反数;

  2. 通道1/2输出开关;

  3. 通道1/2输出电压:范围为-4V至4V。

3 实现思路

3.1 示波器与频谱仪

  • ADC对模拟输入进行采样,采样由定时器触发,采样结果由DMA搬运;

  • 将采样得到的ADC量化值映射到屏幕坐标点上,实现波形显示;

  • 对采样序列进行FFT变换,绘制频谱;

  • 按下按键调整采样频率,实现波形在时间轴上的扩展与压缩;

  • 信号参数的显示,如峰峰值、直流分量、信号频率等。

3.2 波形发生器

  • 根据预设的输出信号波形信息生成查找表;

  • DMA将查找表数据逐项搬运至DAC进行输出,搬运由定时器触发;

  • 按键调整输出使能、信号参数等。

3.3 PWM发生器

  • 使用STM32定时器自带的PWM功能输出PWM信号;

  • 按键调整输出使能、频率与占空比,并进行定时器参数的更新。

3.4 直流电源

  • 使用STM32定时器自带的PWM功能生成PWM信号,经低通滤波器后输出直流信号;

  • 改变PWM的占空比即可改变直流电压值。

 

4 示波器与频谱仪实现过程

4.1 ADC对信号进行采样

为了方便进行FFT计算,ADC在每个通道共采集256个采样点。每次ADC转换由定时器1触发,触发频率最高为320kHz,即ADC采样率最高为320ksps。ADC的转换结果直接由DMA搬运至内存。

ADC转换开始函数(定义位置:sample.c,调用位置:scope.c):

/**
* @brief Start a new sample sequence.
* @param[in] ADCValue_raw Array to store incoming sample values.
* @retval None
*/

void start_sample(uint16_t *ADCValue_raw)
{
HAL_Delay(1);
HAL_ADCEx_Calibration_Start(&hadc);
HAL_ADC_Start_DMA(&hadc, (uint32_t *)ADCValue_raw, SAMPLE_POINTS * 2);
}

256次转换结束后进入中断,置位结束标志位,进入后续的数据处理程序。

ADC转换结束中断回调函数(定义位置:stm32f0xx_it.c):

void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
{
finish_sample();
}

4.2 采样结果的处理

由于ADC一次触发对两个通道进行采样,在采样后的数组里两个通道的采样信息是交替的,需要对其分开,即将采样后的原始数组转化为二维数组,二维数组每一行代表一个通道的ADC量化值。

ADC数据转换部分代码(定义位置:sample.c,调用位置:scope.c):

/**
* @brief Split raw ADCValue array to a 2-D array based on channels.
* @param[in] ADCValue_raw Array to store raw sample values.
* @param[out] ADCValue 2-D array of split sample values.
* @note Each row in ADCValue contains sample values in a channel.
* @retval None
*/

void ADCValue_split(uint16_t *ADCValue_raw, uint16_t ADCValue[][SAMPLE_POINTS])
{
uint16_t i;
for (i = 0; i < SAMPLE_POINTS; i++)
{
ADCValue[CH2][i] = ADCValue_raw[2*i];
ADCValue[CH1][i] = ADCValue_raw[2*i+1];
}
}

得到每个通道256个ADC量化值后,根据触发电平(0V)选择波形起始点,返回起始点在数组中的下标,显示从起始点开始的192个点。

波形触发部分代码(定义位置:wave.c,调用位置:scope.c,其中total_points=256, GRAPH_WIDTH=193):

/**
* @brief Wave trigger.
* @param[in] ADCValue Array of sampled ADC values (one channel).
* @param[in] total_points Total sampled points.
* @retval Index of the trigger start point(>1). 0 means trigger off or failed.
*/

uint16_t trigger(uint16_t *ADCValue, uint16_t total_points)
{
uint16_t i;
uint16_t trigger_value = VOL2ADC(0);

if (!is_trigger_on())
return 0;

for (i = 1; i < total_points - GRAPH_WIDTH + 2; i++)
{
if (!get_trigger_edge()) // falling edge
{
if (ADCValue[i-1] > trigger_value && ADCValue[i] <= trigger_value)
{
trigger_success();
if (is_trigger_single())
pause();
return i;
}
}
else
{
if (ADCValue[i-1] <= trigger_value && ADCValue[i] > trigger_value)
{
trigger_success();
if (is_trigger_single())
pause();
return i;
}
}
}

trigger_fail();
return 0;
}

为显示上述192个点,需要将ADC量化值与LCD屏幕上的坐标进行线性映射,线性映射需考虑:ADC量化值向ADC输入电压值的映射,ADC输入电压值向运放输入电压值的映射,ADC量化值向LCD屏幕纵坐标的映射。

在自动模式(自动缩放y轴)中,程序以主通道为基准,自动找出量化值中的最大最小值,并使最大最小值也能不超出绘制范围以外,这样屏幕就可以显示主通道完整的波形。在手动缩放模式中,可以手动调节y轴的缩放范围,但此时波形不一定会完整显示。

得到采样点坐标后,使用st7789库的绘制直线函数,连接屏幕上各个离散的点,就可以得到信号的波形。此外,若在绘制波形之前刷新屏幕或者一次性删除掉上次的波形,会有非常明显的闪屏现象。所以绘制波形的过程中需要边删除边绘制,即删除一小段上次的波形,再绘制一小段新的波形,重复以上操作,直至整个波形绘制完毕。

自动缩放y轴代码(定义位置:wave.c,调用位置:scope.c):

/**
* @brief Automatically find the central/max/min voltage on y-axis.
* @param[in] ADCValue Array of sampled ADC values (one channel).
* @note The function calculates the min/max voltage of the main channel signal,
* then find a proper scale voltage and a central voltage on y-axis.
* @retval None
*/

void auto_scale(uint16_t *ADCValue)
{
uint16_t a_max_value, a_min_value, a_pp_value;
get_max_min_pp_value(ADCValue, &a_max_value, &a_min_value, &a_pp_value);
voltage_range_auto_select(ADC2VOL(a_min_value) > -ADC2VOL(a_max_value) ? ADC2VOL(a_min_value) : -ADC2VOL(a_max_value));
volt_on_y_axis.center_voltage = 0;
volt_on_y_axis.max_voltage = volt_on_y_axis.center_voltage + v_scale_list[v_scale_index];
volt_on_y_axis.min_voltage = volt_on_y_axis.center_voltage - v_scale_list[v_scale_index];
}

坐标映射代码(定义位置:wave.c,调用位置:scope.c):

/**
* @brief Generate y-coordinates of the wave.
* @param[in] ADCValue 2-D array of sampled ADC values (all channels).
* @param[in] trigger_index index of the first point of triggered wave
* @param[out] y 2-D Y-coordinate array of the wave.
* @note The function map ADCValues to LCD y coordinates.
* @retval None
*/

void generate_wave(uint16_t ADCValue[][SAMPLE_POINTS], uint16_t trigger_index, uint8_t y[][GRAPH_WIDTH])
{
// Quantize y-axis min/max voltages to ADC values.
int16_t a_max_value = VOL2ADC(volt_on_y_axis.min_voltage);
int16_t a_min_value = VOL2ADC(volt_on_y_axis.max_voltage);
uint8_t i;
enum channel ch;

for (ch = 0; ch < NUM_CH; ch++)
{
// Linearly map every ADC value to its coordinate.
for (i = 0; i < GRAPH_WIDTH - 1; i++)
{
if (ADCValue[ch][i+trigger_index] <= a_max_value && ADCValue[ch][i+trigger_index] >= a_min_value)
y[ch][i] = (GRAPH_HEIGHT - 1) * (ADCValue[ch][i+trigger_index] - a_min_value) / (a_max_value - a_min_value) + GRAPH_START_Y;
else if (ADCValue[ch][i+trigger_index] > a_max_value)
y[ch][i] = GRAPH_HEIGHT + GRAPH_START_Y - 1;
else if (ADCValue[ch][i+trigger_index] < a_min_value)
y[ch][i] = GRAPH_START_Y;
}
}

}

波形显示代码(定义位置:scope_display.c,调用位置:scope.c):

/**
* @brief Display wave on LCD.
* @param[in] y Y-coordinate array of the wave.
* @param[in] y_prev Y-coordinate array of the wave to be cleared.
* @param[in] ch channel of the wave
* @retval None
*/

void display_wave(const uint8_t *y, const uint8_t *y_prev, enum channel ch)
{
uint8_t x;
for (x = GRAPH_START_X; x < GRAPH_WIDTH - 1; x++)
{
ST7789_DrawLine(x, y_prev[x-GRAPH_START_X], x + 1, y_prev[x-GRAPH_START_X+1], BLACK);
ST7789_DrawLine(x, y[x-GRAPH_START_X], x + 1, y[x-GRAPH_START_X+1], ch_color[ch]);
}
}

4.3 频谱显示

在频谱显示页面,需要对各通道的ADC的量化值分别进行256点FFT变换。去掉低频、直流和无效部分,保留FFT序号为8~127的结果,进行线性映射后显示在屏幕上。

FFT的代码定义在fftutil.c中,对变换结果的处理及显示分别定义在spectrum.c和spectrum_display.c中。

5 波形发生器实现过程

波形发生器部分主要参考https://www.emoe.xyz/archives/1469设计,设计思路在3.2节中已经介绍,这里对一些实现细节与修改部分进行分析。

5.1 查找表

由dds原理可知,输出信号频率的计算公式为

其中f_MCLK为dds主频率(查找表步进频率),为定时器溢出频率的二倍(DMA Double Data Mode,见前文链接);N_max为查找表表长,查找表储存了待输出信号一个周期内的幅度值。在stm32中,为保证输出频率f_out取在0.1kHz~100kHz范围内且频率误差足够小,且防止查找表占用过大空间,f_MCLK和N_max必须是可变的,即对于不同的f_out,需要规定一个合适的f_MCLK,并算出对应的N_max。

设置N_max和f_MCLK的代码如下(DDS_setWaveParams函数,定义在dds.c中):

// Select frequency range and register timer's parameters
if (freq >= 100 && freq < 1000)
{
// FMCLK = 100kHz, 48M / 960 * 2 = 100kHz
__HAL_TIM_SET_AUTORELOAD(&htim3, 960-1);
dds.lutLen = (uint32_t)(100000 / freq);
getNewWaveLUT(dds.lutLen, dds.waveType, dds.amp, dds.offset);
}
else if (freq >= 1000 && freq < 10000)
{
// FMCLK = 1MHz, 48M / 96 * 2 = 1MHz
__HAL_TIM_SET_AUTORELOAD(&htim3, 96-1);
dds.lutLen = (uint32_t)(1000000 / freq);
getNewWaveLUT(dds.lutLen, dds.waveType, dds.amp, dds.offset);
}
else if (freq >= 10000 && freq < 100000)
{
// FMCLK = 2MHz, 48M / 48 * 2 = 2MHz
__HAL_TIM_SET_AUTORELOAD(&htim3, 48-1);
dds.lutLen = (uint32_t)(2000000 / freq);
getNewWaveLUT(dds.lutLen, dds.waveType, dds.amp, dds.offset);
}

getNewWaveLUT为查找表生成函数,前面算出的N_max(代码中为dds.lutlen)即为查找表表长。我对原作者的getNewWaveLUT函数进行了修改,使其能直接生成信号幅度、直流偏移可变的查找表,代码如下:(定义位置:dds.c,其中DAC_AMP=2046代表输出为0V时DAC量化值为2046,DDS_MAX_AMP=40代表最大幅度为4.0V)

void getNewWaveLUT(uint32_t length, uint8_t type, uint8_t amp, int8_t offset)
{
uint16_t a_offset_value = DAC_AMP - (int32_t)DAC_AMP * offset / DDS_MAX_AMP;
char str[6];
sprintf(str, "%5u", a_offset_value);
ST7789_WriteString(10, 220, str, Font_11x18, WHITE, BLACK);
if (type == SINE_WAVE)
{
float sin_step = 2.0f * 3.14159f / (float)(length-1);
for (uint16_t i = 0; i < length; i++)
{
dds_lut[i] = (uint16_t)(a_offset_value - (DAC_AMP * sinf(sin_step*(float)i) * amp / DDS_MAX_AMP));
}
}

else if (type == SQUARE_WAVE)
{
for(uint16_t i = 0; i < length / 2; i++)
{
dds_lut[i] = a_offset_value - DAC_AMP * amp / DDS_MAX_AMP;
dds_lut[i + (length / 2)] = a_offset_value + DAC_AMP * amp / DDS_MAX_AMP;
}
}

else if (type == TRIANGLE_WAVE)
{
uint16_t tri_step = DAC_AMP * 2 * amp / DDS_MAX_AMP / (length/2);

for(uint16_t i = 0; i < length / 2; i++)
{
dds_lut[i] = a_offset_value - DAC_AMP * amp / DDS_MAX_AMP + tri_step*i;
dds_lut[length - i - 1] = dds_lut[i];
}
}
}

5.2 DAC Output Buffer

原作者提到关闭DAC Output Buffer可以提升DAC输出速率,但是关闭DAC Output Buffer会使DAC端口的输出电阻变大,在本项目中会导致输出电压有很大的误差。为保证输出电压的准确性,本项目需要开启DAC Output Buffer。

 

6 遇到的主要难题

在寒假我参与了“STM32G0简易示波器与信号发生器”项目,遇到的一些主要困难可以在该项目的主页中找到(网址:https://www.eetree.cn/project/detail/167)。虽然两个项目都是基于STM32CUBEIDE开发,不过将程序从G0芯片移植到F0芯片,还是遇到了许多问题:

  • 时钟频率的问题:G0芯片的时钟频率是64M,而F0芯片是48M,代码中许多与时钟相关的地方需要重新调整频率值。

  • ADC转换通道问题:寒假的项目中ADC每次只需要对一个通道进行采样,通过按键切换到另一通道;而F0芯片需要对两个ADC通道同时采样,而且转换结果也是放在一个数组里交替存储的,需要将其分开,因此很多函数的输入参数都需要从原来的一维数组改为二维数组,以同时处理两个通道的数据。

  • 屏幕驱动及显示问题:寒假的项目使用的是OLED屏幕,本次项目使用的是LCD屏幕,且两个屏幕的分辨率、驱动等均不同。本次项目LCD显示部分我使用了Floyd-Fish的ST7789库(链接:https://github.com/Floyd-Fish/ST7789-STM32),该库底层使用HAL库实现,但作为示波器显示波形时波形刷新速度很慢,经常卡顿,我将其改为LL库后刷新速度有了很大提升。HAL库的SPI发送函数调用了很多子函数,非常繁琐耗时,而LL库的SPI发送函数只有几步寄存器操作,极为高效。

 

7 未来的计划建议

该项目已经成功实现了口袋仪器的基本功能,并达到了预期指标。然而还有一些可以提升与扩展的地方:

  • 可以引出调试接口(UART或SWD)或增加LED指示灯,在这次活动中我主要使用LCD显示调试内容,较为不便。

  • 主控芯片STM32F072的资源有限。可以更换更好的主控芯片,来提高采样率,采样点数等从而实现更高的性能,也能实现更快的屏幕刷新速度。

  • 示波器测得的电压与波形发生器输出的电压值有一些误差,误差来源可能是算法中的误差或者是运放电路中元件参数的误差。虽然可以通过软件进行线性矫正或利用反馈端口进行调节,但由于时间精力有限未能完成。

  • 当前触发电平被固定在0V,且无法(不修改代码)调节,导致一些波形(如PWM波,电压值恒≥0V)无法准确被触发,以后可以添加调节触发电平的功能。



这款基于STM32F072的口袋仪器是一款专用于嵌入式编程学习的平台,硬禾学堂同时开发了一款基于STM32G491的商用版本,已经上线Kickstarter众筹平台:Kickstarter上众筹的多功能袖珍仪器 - 随时、随地学习电路、调试电路的好帮手

硬件设计跟这款STM32F072的平台基本一致。


祝周末愉快!


电子森林 讲述电子工程师需要掌握的重要技能: PCB设计、FPGA应用、模拟信号链路、电源管理等等;不断刷新的行业新技术 - 树莓派、ESP32、Arduino等开源系统;随时代演进的热点应用 - 物联网、无人驾驶、人工智能....
评论
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 129浏览
  • 百佳泰特为您整理2025年1月各大Logo的最新规格信息,本月有更新信息的logo有HDMI、Wi-Fi、Bluetooth、DisplayHDR、ClearMR、Intel EVO。HDMI®▶ 2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新规范将支持更高的分辨率和刷新率,并提供更多高质量选项。更快的96Gbps 带宽可满足数据密集型沉浸式和虚拟应用对传输的要求,如 AR/VR/MR、空间现实和光场显示,以及各种商业应用,如大型数字标牌、医疗成像和
    百佳泰测试实验室 2025-01-16 15:41 157浏览
  • 故障现象 一辆2007款法拉利599 GTB车,搭载6.0 L V12自然吸气发动机(图1),累计行驶里程约为6万km。该车因发动机故障灯异常点亮进厂检修。 图1 发动机的布置 故障诊断接车后试车,发动机怠速轻微抖动,发动机故障灯长亮。用故障检测仪检测,发现发动机控制单元(NCM)中存储有故障代码“P0300 多缸失火”“P0309 气缸9失火”“P0307 气缸7失火”,初步判断发动机存在失火故障。考虑到该车使用年数较长,决定先使用虹科Pico汽车示波器进行相对压缩测试,以
    虹科Pico汽车示波器 2025-01-15 17:30 95浏览
  • 近期,智能家居领域Matter标准的制定者,全球最具影响力的科技联盟之一,连接标准联盟(Connectivity Standards Alliance,简称CSA)“利好”频出,不仅为智能家居领域的设备制造商们提供了更为快速便捷的Matter认证流程,而且苹果、三星与谷歌等智能家居平台厂商都表示会接纳CSA的Matter认证体系,并计划将其整合至各自的“Works with”项目中。那么,在本轮“利好”背景下,智能家居的设备制造商们该如何捉住机会,“掘金”万亿市场呢?重认证快通道计划,为家居设备
    华普微HOPERF 2025-01-16 10:22 176浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 109浏览
  • 全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,与汽车技术领先者法雷奥合作,采用创新的开放系统协议(OSP)技术,旨在改变汽车内饰照明方式,革新汽车行业座舱照明理念。结合艾迈斯欧司朗开创性的OSIRE® E3731i智能LED和法雷奥的动态环境照明系统,两家公司将为车辆内饰设计和功能设立一套全新标准。汽车内饰照明的作用日益凸显,座舱设计的主流趋势应满足终端用户的需求:即易于使用、个性化,并能提供符合用户生活方式的清晰信息。因此,动态环境照明带来了众多新机遇。智能LED的应用已
    艾迈斯欧司朗 2025-01-15 19:00 78浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 146浏览
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 236浏览
  • 数字隔离芯片是现代电气工程师在进行电路设计时所必须考虑的一种电子元件,主要用于保护低压控制电路中敏感电子设备的稳定运行与操作人员的人身安全。其不仅能隔离两个或多个高低压回路之间的电气联系,还能防止漏电流、共模噪声与浪涌等干扰信号的传播,有效增强电路间信号传输的抗干扰能力,同时提升电子系统的电磁兼容性与通信稳定性。容耦隔离芯片的典型应用原理图值得一提的是,在电子电路中引入隔离措施会带来传输延迟、功耗增加、成本增加与尺寸增加等问题,而数字隔离芯片的目标就是尽可能消除这些不利影响,同时满足安全法规的要
    华普微HOPERF 2025-01-15 09:48 184浏览
  • 一个易用且轻量化的UI可以大大提高用户的使用效率和满意度——通过快速启动、直观操作和及时反馈,帮助用户快速上手并高效完成任务;轻量化设计则可以减少资源占用,提升启动和运行速度,增强产品竞争力。LVGL(Light and Versatile Graphics Library)是一个免费开源的图形库,专为嵌入式系统设计。它以轻量级、高效和易于使用而著称,支持多种屏幕分辨率和硬件配置,并提供了丰富的GUI组件,能够帮助开发者轻松构建出美观且功能强大的用户界面。近期,飞凌嵌入式为基于NXP i.MX9
    飞凌嵌入式 2025-01-16 13:15 199浏览
  • 食物浪费已成为全球亟待解决的严峻挑战,并对环境和经济造成了重大影响。最新统计数据显示,全球高达三分之一的粮食在生产过程中损失或被无谓浪费,这不仅导致了资源消耗,还加剧了温室气体排放,并带来了巨大经济损失。全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,艾迈斯欧司朗基于AS7341多光谱传感器开发的创新应用来解决食物浪费这一全球性难题。其多光谱传感解决方案为农业与食品行业带来深远变革,该技术通过精确判定最佳收获时机,提升质量控制水平,并在整个供应链中有效减少浪费。 在2024
    艾迈斯欧司朗 2025-01-14 18:45 133浏览
  • 随着智慧科技的快速发展,智能显示器的生态圈应用变得越来越丰富多元,智能显示器不仅仅是传统的显示设备,透过结合人工智能(AI)和语音助理,它还可以成为家庭、办公室和商业环境中的核心互动接口。提供多元且个性化的服务,如智能家居控制、影音串流拨放、实时信息显示等,极大提升了使用体验。此外,智能家居系统的整合能力也不容小觑,透过智能装置之间的无缝连接,形成了强大的多元应用生态圈。企业也利用智能显示器进行会议展示和多方远程合作,大大提高效率和互动性。Smart Display Ecosystem示意图,作
    百佳泰测试实验室 2025-01-16 15:37 172浏览
  • 实用性高值得收藏!! (时源芯微)时源专注于EMC整改与服务,配备完整器件 TVS全称Transient Voltage Suppre,亦称TVS管、瞬态抑制二极管等,有单向和双向之分。单向TVS 一般应用于直流供电电路,双向TVS 应用于电压交变的电路。在直流电路的应用中,TVS被并联接入电路中。在电路处于正常运行状态时,TVS会保持截止状态,从而不对电路的正常工作产生任何影响。然而,一旦电路中出现异常的过电压,并且这个电压达到TVS的击穿阈值时,TVS的状态就会
    时源芯微 2025-01-16 14:23 152浏览
  • 晶台光耦KL817和KL3053在小家电产品(如微波炉等)辅助电源中的广泛应用。具备小功率、高性能、高度集成以及低待机功耗的特点,同时支持宽输入电压范围。▲光耦在实物应用中的产品图其一次侧集成了交流电压过零检测与信号输出功能,该功能产生的过零信号可用于精确控制继电器、可控硅等器件的过零开关动作,从而有效减小开关应力,显著提升器件的使用寿命。通过高度的集成化和先进的控制技术,该电源大幅减少了所需的外围器件数量,不仅降低了系统成本和体积,还进一步增强了整体的可靠性。▲电路示意图该电路的过零检测信号由
    晶台光耦 2025-01-16 10:12 97浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦