【独家】我就要用MDK来开发树莓Pico,怎么地吧!

RTThread物联网操作系统 2021-09-11 10:00


【说在前面的话】


按照树莓派基金会的说法:

Raspberry Pi Pico is a tiny, fast, and versatile board built using RP2040, a brand new microcontroller chip designed by Raspberry Pi in the UK.

https://www.raspberrypi.org/products/raspberry-pi-pico/


树莓派 Pico是一个小巧、“迅速”且多功能的开发板,基于独家定制的RP2040芯片打造,是在英国的树莓派团队设计的全新微控制器。

30RMB左右的价格来看,Pico作为一个开发板具有非常吸引人的特性:

  • 搭载了设计最大频率为133MHz的双核Cortex-M0+

    • 实际可以轻松超频到250MHz,甚至是400MHz

  • 256K + 8K 的SRAM

    • 由多个SRAM总线从机接口构成,从而保证了多总线主机访问时不易出现冲突的问题——双向八车道的高速,几乎不会堵车——吞吐量杠杠的

  • 大量充满奇思妙想的外设(这里就不做赘述)


在开发环境上,Pico身为单片机,却有着Linux般豪华的富贵病——这么说吧,你要是没玩过cmake、gcc、没用过命令行、没搞过OpenOCD,你都不好意思说你是Pico的C玩家。

在Pico官方论坛上,曾经有一个带节奏的帖子叫做《Pi Pico - the most user un-friendly MCU?(中文:树莓派Pico——对用户最不友好的MCU)?如果你可以看懂英文,建议去观摩下这个13页的热帖。其中你可以看到:


  • Pico-SDK团队开发者下场撕逼亲切的与各种暴躁老哥用户交流使用经验
  • Pico-SDK开发者谈Pico开发环境的设计思路,总结如下:
    • 不会玩cmake的请学习cmake,用不了你多少时间
    • Windows我们也支持啊,你装个Linux模拟环境……
    • 我们推荐所有用户都应该用树莓派4的Linux环境来开发Pico这个MCU
    • 别人都玩得好好的,你玩不好一定是你不熟悉cmake
    • makefile玩家、IAR玩家、MDK玩家请自寻出路(“on your own”)
    • 我们团队庙小,4美元的开发板你还要啥自行车?
    • ……

诸如此类,非常下饭。该贴的连接如下:

https://www.raspberrypi.org/forums/viewtopic.php?f=144&t=315750&start=75


然而,MCU的开发并不同于MPU的开发。我的观察中,树莓派这类能跑Linux的系统,基本上使用的是Linux生态,在这一生态下,很多工具比如cmake、命令行、GDB或者OpenOCD之类都是如空气和水一样自然的东西。然而,树莓派团队在处理Pico这类MCU时可能多少有点“屁股决定脑袋”了,仍然按照自己的习惯照搬了Linux的那套开发习惯到MCU环境中。


我经常说,抛开正态分布的中央主极大、用两端的个案来举反例,就是耍流氓。


对MCU开发环境来说,虽然也有不少人使用gcc、cmake之类的工具,但主体的大多数人还是以IDE等“一站式”开发工具为主体的。RP2040无论多么优秀,它本质上就是个装了两个Cortex-M0+的大号MCU,凭什么非要上Linux环境才能开发?

MDK虽然老旧、不支持多级工程管理、偶尔闪退、语法提示经常出错、被破解的爹妈都不认识……被人骂了那么多,但Cortex-M用MDK开发仍然是主流。但无奈,人家的孩子人家说了算,官方明确态度说暂时不支持Arm Compiler 6,也不支持用MDK这样的不带cmake支持的IDE,你也没办法啊


好在Pico-SDK是一个基于BSD 3-Clause协议的开源项目;RP2040的数据手册写的也很清晰。官方说不支持,我们就自己来呗?于是就有了这个MDK专属的Pico-Template开源项目。



实际上:

  • Pico-Template 是目前世界上第一个用MDK配合Arm Compiler 6开发Pico的模板;

  • 使用该模板你可以使用Pico-SDK来访问全部的外设



实际使用中 Pico-Template 具有以下特点:

  • 支持Arm Compiler 6

  • 可以使用RTE和Pack-Installer获得各类中间件软件包

  • 告别纯汇编编写的startup文件,使用纯C语言进行开发

  • 配置栈和堆的大小更为简单

  • 支持使用JLINK进行调试

  • 默认搭载了perf_counter服务

  • 一键切换不同的地址空间布局

    • 在外部Flash里执行代码

    • 在SRAM里执行代码(代码仍保存在外部Flash里)

    • 在SRAM里调试

  • 【裸机思维】对该开源项目提供持续的维护和更新


【Pico-Template的部署】


一个合格的工程模板,应该做到只要成功的下载到了本地,就能够立即使用——Pico-Template也是这样。因此,所谓的Pico-Template的部署,实际上有三种方式:它们主要围绕着如何处理Pico-Template所依赖的第三方仓库而有所区别。

第一种方式:使用git工具进行下载



1、新建一个目录,比如叫做 pico-mdk来保存模板,并进入该目录
mkdir pico-mdkcd pico-mdk

2、使用git工具clone模板到本地:
git clone https://github.com/GorgonMeducer/Pico_Template .


3、将Pico-Template所依赖的其它仓库以submodule的形式更新到本地:

git submodule update --remote --init


至此,我们已经成功的将Pico-Template同步到了本地一个叫做pico-mdk的目录下。


第二种方式:手工下载压缩包


1、打开Pico-Template在Github上的Release页面,下载最新版本的压缩包。


https://github.com/GorgonMeducer/Pico_Template/releases



完成下载后,解压缩到本地。


2、打开Pico-SDK在Github上的Release页面,下载最新的压缩包:

https://github.com/raspberrypi/pico-sdk/releases



完成下载后,解压缩到本地。打开解压后的目录,应该看到类似下图的内容:

全选上述目录列表中的内容后,将它们拷贝Pico-Templatepico-sdk目录


3、打开perf_counter在github上的Release页面,下载最新的压缩包:


https://github.com/GorgonMeducer/perf_counter/releases



完成下载后,解压缩到本地。打开解压后的目录,应该看到类似下图的内容:


全选上述目录列表中的内容后,将它们拷贝Pico-Template/project/mdk/perf_counter目录内:


至此,我们成功的完成了Pico-Template的合体工作。恭喜恭喜!


第三种方式:网盘见


如果你觉得上述方法都挺麻烦的,尤其是你无法稳定的访问Github,那么可以在订阅【裸机思维】公众号后发送关键字 "Pico"来获取网盘链接。下载成功后立即可以使用。

这一方法唯一的缺点是:我可能会忘记更新网盘上的压缩包。





【如何编译和下载】


当你获得了Pico-Template后,可以通过路径project/mdk找到工程文件:

双击后,就可以见到我们熟悉的界面:

单击编译,应该可以顺利的看到类似如下的结果:



可以看到,在工程目录下(project/mdk/) 生成了一个名为 template.uf2 的文件——这就是Pico专用的镜像文件:



此时,我们可以按住Pico上的白色按钮不放、将Pico的USB接口连接PC。当我们在文件管理器中发现一个新的叫做 PRI-RP2 的U盘时,说明Pico已经成功进入烧录准备状态。


template.uf2拖放到U盘中即可。

如果一切顺利,可以看到Pico上的LED以大约0.5Hz的频率进行呼吸。


【如何配置栈和堆的大小】


一个实用的工程模板,最绕不开的问题之一就是:如何设置栈和堆的大小。Pico-Template提供了极其简单的方法。步骤如下:

1、打开Options for Target窗口,进入Linker选项卡:

单击图中红圈内选中的“Edit”按钮。



这里宏STACK_0_SIZEHEAP_0_SIZE就是我们要配置的栈与堆的尺寸。请暂时无视其它宏的内容,也不要修改它们。


完成修改后,保存、重新编译即可。


【如何在SRAM中执行代码】


由于RP2040芯片并没有片内Flash,因此通常会像Pico那样使用外部Flash来保存程序。由于RP2040的XIP已经将外部Flash的内容映射到了Cortex-M0+的地址空间中(从0x10000000开始),因此可以直接在外部Flash上执行代码。众所周知,外部Flash是通过SPI或者QSPI来连接的,其速度肯定无法媲美芯片内部的Flash,因此即便 XIP有cache来提高速度,直接从0x1000-0000的地址上运行程序(或者是读取数据)显然存在性能上的瓶颈。
为了解决这一问题,在SRAM富余的情况下(RP2040带了264KB的SRAM)对一些小的应用来说,完全允许用户直接在SRAM中执行代码。为了提供这一功能,Pico-Template贴心的提供了对应的工程配置:我们可以在下拉列表中直接一键切换:


这一操作的本质实际上是更换了对应的scatter-script脚本。所有用到的链接脚本都保存在工程目录下:


有兴趣的小伙伴可以自行把玩。



【如何使用MDK进行调试】


在众多的商业调试工具中,Segger 的J-Link很迅捷的就添加了对RP2040的调试支持,具体细节可以通过下面的网址来了解:

https://wiki.segger.com/Raspberry_Pi_Pico


Pico-Template默认已经选择J-Link作为调试工具。需要注意的是,并非所有的J-Link都能支持RP2040的调试,按照官方的说法,只有v9版本的J-Link硬件才有对应的功能。如果你手头正好有符合要求的J-Link,恭喜你,获得了完整的MDK体验——基本告别了手动拖放uf2文件,调试全靠LED的生活。

【elf2uf2转换工具】


最后,值得特别说明的是,在Pico_Template的tool目录下有一个我亲手定制过的elf2uf2.exe——增加了自动计算0x1000-0000地址开始的252个字节的CRC32校验码,并将校验结果追加其后的功能——如果不这么做,生成的uf2将无法通过stage2-boot的校验。


工程模板会在每次编译完成后执行 axf2uf2.bat,将生成的elf/axf文件转换成Pico可以直接使用的uf2文件,方便用户进行U盘拖放操作。


【说在后面的话】


说句实话,我挺喜欢树莓派Pico的——即便我对官方的“Pico官方只支持用cmake开发不然自己想办法”的态度有些许不满,但仍然架不住它的小巧和魅力。
这个模板已经涵盖了除tinyUSB支持以外的几乎大部分功能,成功的将Pico以普通Cortex-M0+的身份拉回了国内大部分嵌入式工程师所熟悉的开发环境中。

最后的最后,我一定要把心里憋了很久的那句话吐出来:

就一个M0+而已,干嘛开发它我还要去用命令行、用Linux、学cmake?凭什么?


你们Linux玩家人均cmake、命令行、OpenOCD、GDB、gcc,所以就不管单片机玩家的死活了么?

跟我这儿玩啥凡尔赛?

老子就不想用cmake……你还不让我玩了?


就一个M0+而已,我就要用MDK来开发!怎么地吧!




原创不易,

如果你喜欢我的思维、觉得我的文章对你有所启发,

请务必 “点赞、收藏、转发” 三连,这对我很重要!谢谢!


欢迎订阅 裸机思维


你可以添加微信17775982065为好友,注明:公司+姓名,拉进RT-Thread官方微信交流群!


RTThread物联网操作系统 帮助您了解RT-Thread相关的资讯.
评论 (0)
  • 医疗影像设备(如CT、MRI、超声诊断仪等)对PCB的精度、可靠性和信号完整性要求极高。这类设备需要处理微伏级信号、高频数据传输,同时需通过严格的EMC/EMI测试。制造此类PCB需从材料选择、层叠设计、工艺控制等多维度优化。以下是关键技术与经验分享。 1. 材料选择:高频与生物兼容性优先医疗影像设备PCB常采用 Rogers RO4000系列 或 Isola FR4高速材料,以降低介电损耗并保证信号稳定性。例如,捷多邦在客户案例中曾为某超声探头厂商推荐 Rogers RO4350B
    捷多邦 2025-04-07 10:22 60浏览
  • 文/杜杰编辑/cc孙聪颖‍2025年的3月,成功挺过造车至暗时刻的小米创始人雷军,接连迎来人生的高光。(详情见:雷军熬过黑夜,寄望小米SU7成为及时雨)在颜值即正义的舆论导向之下,全国两会期间,雷军凭借得体的衣着、挺拔的身姿赢得赞誉。面对雷军的压人表现,连行事一向沉稳、不愿跟风的海尔,都推出“leadership”组合拳,试图助力自家boss,不落下风。(详情见:两会声音|本届全国两会,周云杰为海尔省了多少广告费?)喜事接连不断,紧接着的3月18日,雷军重磅宣布小米 “史上最强年报”。雷军的公关
    华尔街科技眼 2025-04-03 20:30 30浏览
  • 一、为什么流量可见性如此重要?在网络管理中,及时掌握流量状况至关重要,这不仅有助于快速排查故障、优化性能,还能提升安全防护能力。为了实现这一目标,企业通常依赖 SPAN 端口(交换机端口镜像)或 网络 TAP(测试接入点)来捕获和分析流量。然而,这两种方法在数据完整性、性能影响和监控能力上存在显著差异。如何选择合适的方案,以确保网络监控的精准性和高效性?本文将深入解析 SPAN 端口与网络 TAP 的核心区别,帮助你做出明智决策。二、SPAN 端口:简单易用,但有局限SPAN 端口也称为镜像端口
    艾体宝IT 2025-04-03 16:41 29浏览
  •   安全生产预警系统作为现代工业与安全管理的重要组成部分,正以前所未有的技术引领力,创新性地塑造着未来的安全管理模式。这一系统通过集成多种先进技术,如物联网、大数据、人工智能、云计算等,实现了对生产环境中潜在危险因素的实时监测、智能分析与及时预警,为企业的安全生产提供了坚实的技术保障。   技术引领:   物联网技术:物联网技术使得各类安全监测设备能够互联互通,形成一张覆盖全生产区域的安全感知网络。传感器、摄像头等终端设备实时采集温度、压力、气体浓度、人员位置等关键数据,为预警系统提供丰富的
    北京华盛恒辉软件开发 2025-04-05 22:18 44浏览
  • 在影像软的发展历程中,美图曾凭借着美图秀秀等一系列产品,在“颜值经济”的赛道上占据了领先地位,成为了人们日常生活中不可或缺的一部分,也曾在资本市场上风光无限,2016 年上市时,市值一度超过46亿美元,备受瞩目。 然而,随着市场的不断发展和竞争的日益激烈,美图逐渐陷入了困境。商业模式单一,过度依赖在线广告收入,使得其在市场波动面前显得脆弱不堪;多元化尝试,涉足手机、电商、短视频、医美等多个领域,但大多以失败告终,不仅未能带来新的增长点,反而消耗了大量的资源。更为严峻的是,用户流失问题日
    用户1742991715177 2025-04-05 22:24 38浏览
  • 【拆解】+南孚测电器拆解 之前在天猫上买了一盒南孚电池,他给我送了一个小东西—测电器。今天我们就来拆解一下这个小东西,看看它是怎么设计和工作的。 三颗指示灯显示电池剩余电量。当点亮3颗LED时,则表示点亮充足。当点亮2颗LED时,则表示还能用。当点亮1颗LED时,表示点亮地建议更换,当无法点亮LED时,则表示没电了。外壳上还印有正负极,以免用户将电池放反。 这个小东西拆解也很方便,一个螺丝刀稍微撬几下。外壳就下来了,它是通过卡扣连接。 开盖后,测电线路板清晰呈现在眼前。 让我们看看小小的线路板有
    zhusx123 2025-04-05 15:41 44浏览
  •     电子电气仪表会标注CAT,后面附带一个罗马数字 I/II/III/IV(1/2/3/4)。这个标志与人身安全相关,指示该仪器仪表可以承受的电压范围。        CAT 最早由 IEC 组织在 IEC 1010 中定义,全名是 Installation Category。在 GB 4793.1-2001 中被翻译为”安装类别“。安装,指的是被测对象在电气系统中的位置,而不是电气电子仪表的位置。见下图。  &
    电子知识打边炉 2025-04-05 22:32 37浏览
  • 引言:小型化趋势下的语音芯片需求随着消费电子、物联网及便携式设备的快速发展,产品设计对芯片的小型化、高集成度和低功耗提出了更高要求。厂家凭借其创新的QFN封装技术,推出WTV系列(如WTV380)及WT2003H系列语音芯片,以超小体积、高性能和成本优势,为紧凑型设备提供理想解决方案。产品核心亮点1. QFN封装技术赋能超小体积极致尺寸:WTV380采用QFN32封装,尺寸仅4×4毫米,WT2003H系列同样基于QFN工艺,可满足智能穿戴、微型传感器等对空间严苛的场景需求。高密度集成:QFN封装
    广州唯创电子 2025-04-07 08:47 48浏览
  • 及时生产 JIT(Just In Time)的起源JIT 起源于 20 世纪 70 年代爆发的全球石油危机和由此引发的自然资源短缺,这对仰赖进口原物料发展经济的日本冲击最大。当时日本的生产企业为了增强竞争力、提高产品利润,在原物料成本难以降低的情况下,只能从生产和流通过程中寻找利润源,降低库存、库存和运输等方面的生产性费用。根据这种思想,日本丰田汽车公司创立的一种具有特色的现代化生产方式,即 JIT,并由此取得了意想不到的成果。由于它不断地用于汽车生产,随后被越来越多的许多行业和企业所采用,为日
    优思学院 2025-04-07 11:56 74浏览
  • 引言:POPO声的成因与影响在语音芯片应用中,WT588F08A作为一款支持DAC+功放输出的高集成方案,常因电路设计或信号处理不当,在音频播放结束后出现POPO声(瞬态噪声)。这种噪声不仅影响用户体验,还可能暴露电路设计缺陷。本文将基于实际案例,解析POPO声的成因并提供系统化的解决方案。一、POPO声的根源分析1. 功放电路状态切换的瞬态冲击当DAC输出的音频信号突然停止时,功放芯片的输入端若处于高阻态或无信号状态,其内部放大电路会因电源电压突变产生瞬态电流,通过喇叭表现为POPO声。关键因
    广州唯创电子 2025-04-07 09:01 60浏览
  • 伴随无线技术的迅速发展,无线路由器市场商机日益庞大。现代消费者在选购无线路由器(Wi-Fi AP)时,通常依赖的是该产品在无干扰的实验室环境中,量测得到的数据报告。然而,这些数据往往是在受控的RF隔离环境中进行测试,无法完全反映真实使用场景。这种情况导致许多消费者抱怨,他们购买的产品效能与宣称的数据不符。在实际应用中,消费者常因Wi-Fi讯号不稳定、传输速度不如预期或设备过热而产生客诉。产品仰赖实验室的数据够吗?无线路由器(Wi-Fi AP)ODM供货商遇到什么挑战?一家台湾知名的无线路由器(W
    百佳泰测试实验室 2025-04-05 00:12 28浏览
  • 在科技浪潮奔涌的当下,云计算领域的竞争可谓是如火如荼。百度智能云作为其中的重要参与者,近年来成绩斐然。2024年,百度智能云在第四季度营收同比增长26%,这样的增速在行业内十分惹眼。回顾全年,智能云业务的强劲增长势头也十分明显,2024年第一季度,其收入达到47亿元,同比增长12%;第二季度营收51亿元,同比增长14%。从数据来看,百度智能云在营收方面一路高歌猛进,展现出强大的发展潜力。然而,市场对百度智能云的表现似乎并不完全买账。2024年,尽管百度智能云数据亮眼,但百度股价却在震荡中下行。在
    用户1742991715177 2025-04-06 20:25 52浏览
  • 【拆解】+沈月同款CCD相机SONY DSC-P8拆解 这个清明假期,闲来无事,给大伙带来一个老古董物品的拆解--索尼SONY DSC-P8 CCD相机。这个产品是老婆好几年前在海鲜市场淘来的,由于显示屏老化,无法正常显示界面了,只有显示背光。但是这也无法阻止爱人的拍照。一顿盲操作依旧可以拍出CCD古董相机的质感。如下实拍: 由于这个相机目前都在吃灰。我就拿过来拆解,看看里面都是怎样个设计,满足下电子爱好者的探索。 首先给大伙展示下这台老相机的全貌。正视图  后视图 
    zhusx123 2025-04-06 17:38 75浏览
  • 在追求环境质量升级与产业效能突破的当下,温湿度控制正成为横跨多个行业领域的核心命题。作为环境参数中的关键指标,温湿度的精准调控不仅承载着人们对舒适人居环境的期待,更深度关联着工业生产、科研实验及仓储物流等场景的运营效率与安全标准。从应用场景上看,智能家居领域要求温湿度系统实现与人体节律的协同调节,半导体洁净车间要求控制温湿度范围及其波动以保障良品率,而现代化仓储物流体系则依赖温湿度的实时监测预防各种产品的腐损与锈化。温湿度传感器作为实现温湿度监测的关键元器件,其重要性正在各行各业中凸显而出。温湿
    华普微HOPERF 2025-04-07 10:05 61浏览
我要评论
0
2
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦