开关电源测试项目

电子芯期天 2021-09-11 08:30



1、功率因素和效率测试

一、目的:

测试S.M.P.S. 的功率因素POWER FACTOR, 效率EFFICIENCY(规格依客户要求设计).

二. 使用仪器设备:

(1). AC SOURCE / 交流电源;

(2). ELECTRONIC LOAD / 电子负载;

(3). DIGITAL VOLTAGE METER (DVM) / 数字式电压表;

(4). AC POWER METER / 功率表;

三. 测试条件:

四、测试方法:

(1). 依规格设定测试条件: 输入电压, 频率和输出负载.

(2). 从POWER METER 读取Pin and PF 值, 并读取输出电压, 计算Pout.

(3). 功率因素=PIN / (Vin*Iin), 效率=Pout / Pin*100%;

五. 测试回路图:

2.能效测试

一、目的:

测试S.M.P.S. 能效值是否满足相应的各国能效等级标准要求(规格依各国标准要求定义).

二. 使用仪器设备:

(1). AC SOURCE / 交流电源;

(2). ELECTRONIC LOAD / 电子负载;

(3). AC POWER METER / 功率表;

三. 测试条件:

(1). 输入电压条件为115Vac/60Hz和230Vac/50Hz与220Vac/50Hz/60Hz条件.

(2). 输出负载条件为空载、1/4 max. load、2/4 max. load、3/4 max. load、max. load五种负载条件.

四、测试方法:

(1).在测试前将产品在在其标称输出负载条件下预热30分钟.

(2). 按负载由大到小顺序分别记录115Vac/60Hz与230Vac/50Hz输入时的输入功率(Pin),输入电流(Iin),输出电压(Vo), 功率因素(PF),然后计算各条件负载的效率.

(3). 在空载时仅需记录输入功率(Pin)与输入电流(Iin).

(4).计算115Vac/60Hz与230Vac/50Hz时的四种负载的平均效率,该值为能效的效率值

五、标准定义:

CEC / 美国EPA / 澳大利亚及新西兰的能效规格值标准(IV等级);

(1). IV等级效率的规格是: 

    1) Po<1W, Average Eff.≥0.5*Po;

    2) 1≤Po≤51W,Average Eff.≥0.09*Ln(Po)+0.5; 

    3) Po>51,Average Eff.≥0.85

(2) 输入空载功率的规格是:1).0<Po≤250W, Pin≤0.5W;

(3) Po为铭牌标示的额定输出电压与额定输出电流的乘积;

(4) 实际测试的平均效率值和输入空载功率值需同时满足规格要求才可符合标准要求.

六、计算方法举例:

(1)12V/1A的能效效率=(0.09*ln12+0.5 )*100%= (0.09*2.4849+0.5)*100%=72.36%;

(2). 输入功率≤ 0.5W;

3. 输入电流测试

一、目的:

测试S.M.P.S. 之输入电流有效值INPUT CURRENT(规格依客户要求设计).

二. 使用仪器设备:

(1). AC SOURCE / 交流电源;

(2). ELECTRONIC LOAD / 电子负载;

(3). AC POWER METER / 功率表;

三. 测试条件:

四、测试方法:

(1). 依规格设定测试条件: 输入电压, 频率和输出负载;

(2). 从功率计中记录AC INPUT 电流值;

4.浪涌电流测试

一、目的:

测试S.M.P.S. 输入浪涌电流INRUSH CURRENT, 是否符合SPEC.要求.

二. 使用仪器设备:

(1). AC SOURCE / 交流电源;

(2). ELECTRONIC LOAD / 电子负载;

(3). OSCILLOSCOPE / 示波器;

三. 测试条件:

(1).依SPEC. 所要求(通常定义输入电压为100-240Vac/50-60Hz).

四、测试方法:

(1). 依SPEC. 要求设定好输入电压, 频率, 將待测品输出负载设定在MAX. LOAD.

(2). SCOPE CH2 接CURRENT PROBE, 用以量测INRUSH CURRENT, CH1设定在DC Mode, VOLTS/DIV 设定视情况而定, CH1

作为SCOPE 之TRIGGER SOURCE, TRIGGER SLOPE 设定为"+", TIME/DIV 以5mS 为较佳, TRIGGER MODE 设定为"NORMAL".

(3). CH1 则接到AC 输入电压.

(4). 以上设定完成后POWER ON, 找出TRIGGER 动作电流值(AT 90o 或270o POWER ON).

五、注意事项:

(1). 冷开机(COLD-START): 需在低(常)温环境下且BULK Cap.电荷须放尽, 以及热敏电阻亦处于常温下, 然后仅能第一次开机,

若需第二次开机须再待电荷放尽才可再开机测试.

(2). OSCILLOSCOPE 需使用隔离变压器.

六、测试回路图:



5. 电压调整率测试

一、目的:

测试S.M.P.S. OUTPUT LOAD 一定而AC LINE 变动时, 其输出电压跟随变动之稳定性(常规定义≤1%).

二. 使用仪器设备:

(1). AC SOURCE / 交流电源;

(2). ELECTRONIC LOAD / 电子负载;

(3). DIGITAL VOLTAGE METER (DVM) / 数字式电压表;

三. 测试条件:

四、测试方法:

(1). 依规格设定测试负载LOAD 条件.

(2). 调整输入电压AC LINE 和频率FREQUENCY 值.

(3). 记录待测品输出电压值是否在规格内.

(4). Line reg.=(输出电压的最大值(Vmax.)-输出电压的最小值(Vmin.))/Vrate volt.*100%.

五. 注意事项:

(1). 测试前先将待测品热机, 待其输出电压稳定后再进行测试.

(2). 电压调整率值是输出负载不变,输入电压变动时计算的值.

6.负载调整率测试

一、目的:

测试S.M.P.S. 在AC LINE 一定而OUTPUT LOAD 变动时, 其输出电压跟随变动之稳定性(常规定义≤±5%).

二. 使用仪器设备:

(1). AC SOURCE / 交流电源;

(2). ELECTRONIC LOAD / 电子负载;

(3). DIGITAL VOLTAGE METER (DVM) / 数字式电压表;

三. 测试条件:


四、测试方法:

(1). 依规格设定测试输入电压AC LINE 和频率FREQUENCY 值.

(2). 调整输出负载LOAD 值

(3). 记录待测品输出电压值是否在规格内.

(4). Load reg.=(输出电压的最大/小值(Vmax/min.)-输出电压的额定值(Vrate))/Vrate volt.*100%.

五. 注意事项:

(1). 测试前先将待测品热机, 待其输出电压稳定后再进行测试;

(2). 负载调整率值是输入电压不变,输出负载变动时计算的值.

7. 输入缓慢变动测试

一、目的:

验证当输入电压偏低情形发生时, 待测品需能自我保护, 且不能有损坏现象;

二. 使用仪器设备:

(1). AC SOURCE / 交流电源;

(2). ELECTRONIC LOAD / 电子负载;

(3). AC POWER METER / 功率表;

三. 测试条件:

(1). 依SPEC. 要求: 设定输入电压为90Vac 或180Vac 和输出负载Max. load;

四、测试方法:

(1). 将待测品与输入电源和电子负载连接好, 且设定好输入电压和输出负载;

(2). 逐步调降输入电压, 每次3 Vac/每分钟.

(3). 记录电压值(包括输入电压和输出电压), 直到待测品自动当机为止.

(4). 设定好输入电压为0Vac,逐步调升输入电压, 每次3 Vac/每分钟,

直到待测品输出电压达到正常规格为止,记录电压启动时输出电压和输入电压值.

五、注意事项:

(1). 待测品在正常操作情况下不应有任何不稳动作发生, 以及失效情形;

(2). 产品当机和启动时的输入电压需小于输入电压范围下限值.

8. 纹波及噪声测试

一、目的:

测试S.M.P.S. 直流输出电压之纹波RIPPLE 及噪声NOISE(规格定义常规为≤输出电压的1%);

二. 使用仪器设备:

(1). AC SOURCE / 交流电源;

(2). ELECTRONIC LOAD / 电子负载;

(3) OSCILLOSCOPE / 示波器;

(4) TEMP. CHAMBER / 温控室;

三. 测试条件:

各种LINE 和LOAD 条件及温度条件, 各种输入电压& 输出负载(Min.-MAX. LOAD).

四、测试方法:

(1). 按测试回路接好各测试仪器,设备,以及待测品,测试电源在各种LINE 和LOAD,及温度条件之RIPPLE &NOISE(下图为一典型输出RIPPLE & NOISE A: RIPPLE+NOISE; B: RIPPLE; C: NOISE

五、注意事项:

(1). 测试前先将待测输出并联SPEC. 规定的滤波电容, (通常为10uF/47uF电解电容;或钽电容及0.1uF陶瓷电容) 频宽限制依SPEC. 而定(通常为20MHz).

(2). 应避免示波器探头本身干扰所产生的杂讯.

9.上升时间测试

一、目的:

测试S.M.P.S. POWER ON 时,各组输出从10% ~ 90% POINT 之上升时间(常规定义为≤20mS).

二、使用仪器设备:

(1). AC SOURCE / 交流电源;

(2). ELECTRONIC LOAD / 电子负载;

(3). OSCILLOSCOPE / 示波器。

三、测试条件:

四、测试方法:

(1). 依规格设定AC VOLTAGE, FREQUENCY AND LOAD;

(2). SCOPE 的CH1 接Vo, 并设为TRIGGER SOURCE, LEVEL 设定在Vo 的60% ~ 80% 较为妥当, TRIGGER SLOPE 设定在"+",

TIME/DIV 和VOLTS/DIV 则视输出电压情况而定;

(3). 用CURSOR 中"TIME", 量测待测品各组输出从电压10% 至90% 之上升时间。

五、注意事项:

测试前先将待测品处于冷机状态,待BUCK Cap。电荷放尽后进行测试。

10.下降时间测试

一、目的:

测试S.M.P.S. POWER ON 时,各组输出从90% ~ 10% POINT 之下降时间(常规定义≥5mS)。

二、使用仪器设备:

(1). AC SOURCE / 交流电源;

(2). ELECTRONIC LOAD / 电子负载;

(3). OSCILLOSCOPE / 示波器。

三、测试条件:

四、测试方法:

(1). 依规格设定AC VOLTAGE, FREQUENCY AND LOAD;

(2). SCOPE 的CH1 接Vo, 并设为TRIGGER SOURCE, LEVEL 设定在Vo 的60% ~ 80% 较为妥当, TRIGGER SLOPE 设定在"-",TIME/DIV 和VOLTS/DIV 则视输出电压情况而定;

(3). 用CURSOR 中"TIME", 量测待测品各组输出从电压90% 至10% 之下降时间。

五、注意事项:

测试前先将待测品热机, 待其输出电压稳定后再进行测试。

11.开机延迟时间测试

一、目的:

测试S.M.P.S. POWER ON 时, 输入电压AC LINE 与输出之时间差(常规定义为≤3000mS)。

二、使用仪器设备:

(1). AC SOURCE / 交流电源;

(2). ELECTRONIC LOAD / 电子负载;

(3). OSCILLOSCOPE / 示波器。

三、测试条件:

四、测试方法:

(1). 测试时依规格设定AC LINE, FREQUENCY 和输出负载(一般LOW LINE & MAX. LOAD时间最长);

(2). OSCILLOSCOPE 的CH1 接Vo 为TRIGGER SOURCE, CH2 接AC LINE;

(3). TRIGGER LEVEL 设定在Vo 的60% ~ 80% 间较为妥当,TRIGGER SLOPE 设定在"+",VOLTS/DIV 和TIME/DIV 则视实际情况而定;

(4). 用CURSOR 中"TIME", 量测AC ON 至Vo LOW LIMIT 之时间差。

五、注意事项:

(1). 测试前先将待测品处于冷机状态, 待BULK Cap. 电荷放尽后进行测试;

(2). 示波器(OSCILLOSCOPE) 需使用隔离变压器。

12.关机维持时间测试

一、目的:

测试S.M.P.S. POWER OFF 时, 输入电压AC LINE 与输出OUTPUT 之时间差(常规定义≥10mS/115Vac & ≥20mS/230Vac )。

二、使用仪器设备:

(1). AC SOURCE / 交流电源:

(2). ELECTRONIC LOAD / 电子负载:

(3). OSCILLOSCOPE / 示波器。

三、测试条件:

四、测试方法:

(1). 测试时依规格设定AC LINE, FREQUENCY 和输出负载;

(2). OSCILLOSCOPE 的CH1 接Vo 为TRIGGER SOURCE, CH2 接ACLINE;

(3). TRIGGER LEVEL 设定在Vo 的60% ~ 80% 间较为妥当, TRIGGER SLOPE 设定在“-”, VOLTS/DIV 和TIME/DIV 则视实际情况而定;

(4). 用CURSOR 中"TIME", 量测AC ON 至Vo LOW LIMIT 之时间差。

五、注意事项:

(1). 测试前先将待测品热机, 待其输出电压稳定后再进行测试:

(2). 示波器(OSCILLOSCOPE) 需使用隔离变压器。

13.输出过冲幅度测试

一、目的:

测试S.M.P.S. POWER ON 时, 输出DC OUTPUT 过冲幅度变化量(常规定义为≤10%)。

二、使用仪器设备:

(1). AC SOURCE / 交流电源;

(2). ELECTRONIC LOAD / 电子负载;

(3). OSCILLOSCOPE / 示波器。

三、测试条件:

依SPEC. 所要求,输入电压范围与输出负载(Min. – Max. load)。

四、测试方法:

(1). 测试时依规格设定AC LINE, FREQUENCY 和输出负载;

(2). OSCILLOSCOPE 的CH1 接Vo 为TRIGGER SOURCE;

(3). TRIGGER LEVEL 设定在Vo 的60% ~ 80% 间较为妥当, TRIGGER SLOPE 设定在“+” 和“-”, VOLTS/DIV 和TIME/DIV 则视实际情况而定;

(4). 用CURSOR 中"VOLT", 量测待测品輸出过冲点与稳定值之关系;

(5). ON / OFF 各做十次, 过冲幅度%=△V / Vo *100%。

五、注意事项:

产品在CC与CR模式都需满足规格要求。

14.输出暂态响应测试

一、目的:

测试S.M.P.S. 输出负载快速变化时, 其输出电压跟随变动之稳定性(规格定义电压最大与最小值不超过输出规格的±10%)。

二、使用仪器设备:

(1). AC SOURCE / 交流电源;

(2). ELECTRONIC LOAD / 电子负载;

(3). OSCILLOSCOPE / 示波器。

三、测试条件:

依SPEC.所规定:输入电压AC LINE, 变化的负载LOAD, 频率及升降斜率SR/F 值。

四、测试方法:

(1). 测试时设定好待测品输入电压AC LINE 和频率FREQUENCY;

(2). 测试时设定好待测品输出条件:变化负载和变化频率及升降斜率;

(3). OSCILLOSCOPE CH1 接到OUTPUT 侦测点, 量其电压之变化;

(4). CH2 接CURRENT PROBE 测试输出电流, 作为OSCILLOSCOPE 之TRIGGER SOURCE;

(5). TRIGGER MODE设定为"AUTO."。

五、注意事项:

(1). 注意使用CURRENT PROBE 时,每改变VOLTS/DIV 刻度PROBE 皆须归零ZERO;

(2). 须经常对CURRENT PROBE 进行消磁DEGAUSS 和归零ZERO。

15.过流保护测试

一、目的:

测试S.M.P.S. 输出电流过高时是否保护, 保护点是否在规格要求內, 及是否会对S.M.P.S. 造成损伤(常规定义过流点为输出额定负载的1.2-2.5倍/ CV模式产品除外)。

二、使用仪器设备:

(1). AC SOURCE / 交流电源;

(2). ELECTRONIC LOAD / 电子负载;

(3). OSCILLOSCOPE / 示波器。

三、测试条件:

依SPEC. 所规定:输入电压AC LINE 和电子负载。

四、测试方法:

(1). 将待测组输出负载设在MAX. LOAD;

(2). 以一定的斜率(通常为1.0A/S) 递增, 加大输出电流直至电源保护, 当保护后, 將所加大之电流值递减, 视其输出是否会自动RECOVERY;

(3). OSCILLOSCOPE CH2 接上CURRENT PROBE, 以PROBE 检测输出电流;

(4). CH1 则接到待测输出电压, 作为OSCILLOSCOPE 之TRIGGER SOURCE;

(5). TRIGGER SLOPE 设定为"-", TRIGGER MODE 设定为"AUTO", TIME/DIV 视情况而定。

五、注意事项:

(1). 注意使用CURRENT PROBE 时,每改变VOLTS/DIV 刻度PROBE 皆须归零ZERO;

(2). 须经常对CURRENT PROBE 进行消磁DEGAUSS 和归零ZERO;

(3). 产品不能有安全危险产生。

16.短路保护测试

一、目的:

测试S.M.P.S. 输出端在开机前或在工作中短路时, 产品是否有保护功能。

二、使用仪器设备:

(1). AC SOURCE / 交流电源;

(2). ELECTRONIC LOAD / 电子负载;

(3). OSCILLOSCOPE / 示波器;

(4). 低阻抗短路夹。

三、测试条件:

依SPEC.所规定:输入电压AC LINE和负载LOAD值和低阻抗短路夹。

四、测试方法:

(1). 依规格设定测试条件:输入电压AC LINE和负载LOAD值(一般为MAX.LOAD);

(2). 各组输出相互短路或对地短路,侦测输出特性;

(3). 开机后短路TURN ON THEN SHORT & 短路后开机SHORT THEN TURN ON 各十次。

五、注意事项:

(1). 当SHORT CIRCUIT 排除之后,检测待测品是否自动恢复或需重新启动(视SPEC 要求),并测试产品是否正常或有无零件损坏(产品要求应正常);

(2). 产品不能有安全危险产生。


END
70G硬件设计资料汇总免费送
硬件工程师前途到底怎样?看看大佬怎么说,看完跪了
干货 | 开关电源基础:工作原理和电路图
从《精通开关电源设计》整理出的“反激变换器的设计步骤”

以上来源:网络

往期精彩

1、超详细USB Type-C引脚信号及PCB布局布线介绍

2、超详细开关电源芯片内部电路解析;

3、70G硬件设计资料汇总分享;【友情推荐】

4、分享一份老工程师(某为工作15年)经常使用的pcb企业封装库包含3D库;【友情推荐】

5、【0基础学硬件】为什么在VCC入口串联一个小电阻?可以不加吗?

6、高薪工作机会分享。【找工作看这里】

关注【电子芯期天】后台回复关键字免费资料。获取PCB封装库规范、PCB设计设计规范、华为EMC基础知识、开关电源入门知识等资料。



电子芯期天 致力于分享各种电子电路开发设计资料及经验.
评论 (0)
  • 在影像软的发展历程中,美图曾凭借着美图秀秀等一系列产品,在“颜值经济”的赛道上占据了领先地位,成为了人们日常生活中不可或缺的一部分,也曾在资本市场上风光无限,2016 年上市时,市值一度超过46亿美元,备受瞩目。 然而,随着市场的不断发展和竞争的日益激烈,美图逐渐陷入了困境。商业模式单一,过度依赖在线广告收入,使得其在市场波动面前显得脆弱不堪;多元化尝试,涉足手机、电商、短视频、医美等多个领域,但大多以失败告终,不仅未能带来新的增长点,反而消耗了大量的资源。更为严峻的是,用户流失问题日
    用户1742991715177 2025-04-05 22:24 61浏览
  • 引言:小型化趋势下的语音芯片需求随着消费电子、物联网及便携式设备的快速发展,产品设计对芯片的小型化、高集成度和低功耗提出了更高要求。厂家凭借其创新的QFN封装技术,推出WTV系列(如WTV380)及WT2003H系列语音芯片,以超小体积、高性能和成本优势,为紧凑型设备提供理想解决方案。产品核心亮点1. QFN封装技术赋能超小体积极致尺寸:WTV380采用QFN32封装,尺寸仅4×4毫米,WT2003H系列同样基于QFN工艺,可满足智能穿戴、微型传感器等对空间严苛的场景需求。高密度集成:QFN封装
    广州唯创电子 2025-04-07 08:47 57浏览
  • 引言:POPO声的成因与影响在语音芯片应用中,WT588F08A作为一款支持DAC+功放输出的高集成方案,常因电路设计或信号处理不当,在音频播放结束后出现POPO声(瞬态噪声)。这种噪声不仅影响用户体验,还可能暴露电路设计缺陷。本文将基于实际案例,解析POPO声的成因并提供系统化的解决方案。一、POPO声的根源分析1. 功放电路状态切换的瞬态冲击当DAC输出的音频信号突然停止时,功放芯片的输入端若处于高阻态或无信号状态,其内部放大电路会因电源电压突变产生瞬态电流,通过喇叭表现为POPO声。关键因
    广州唯创电子 2025-04-07 09:01 75浏览
  • 及时生产 JIT(Just In Time)的起源JIT 起源于 20 世纪 70 年代爆发的全球石油危机和由此引发的自然资源短缺,这对仰赖进口原物料发展经济的日本冲击最大。当时日本的生产企业为了增强竞争力、提高产品利润,在原物料成本难以降低的情况下,只能从生产和流通过程中寻找利润源,降低库存、库存和运输等方面的生产性费用。根据这种思想,日本丰田汽车公司创立的一种具有特色的现代化生产方式,即 JIT,并由此取得了意想不到的成果。由于它不断地用于汽车生产,随后被越来越多的许多行业和企业所采用,为日
    优思学院 2025-04-07 11:56 79浏览
  •   安全生产预警系统作为现代工业与安全管理的重要组成部分,正以前所未有的技术引领力,创新性地塑造着未来的安全管理模式。这一系统通过集成多种先进技术,如物联网、大数据、人工智能、云计算等,实现了对生产环境中潜在危险因素的实时监测、智能分析与及时预警,为企业的安全生产提供了坚实的技术保障。   技术引领:   物联网技术:物联网技术使得各类安全监测设备能够互联互通,形成一张覆盖全生产区域的安全感知网络。传感器、摄像头等终端设备实时采集温度、压力、气体浓度、人员位置等关键数据,为预警系统提供丰富的
    北京华盛恒辉软件开发 2025-04-05 22:18 52浏览
  • 在追求环境质量升级与产业效能突破的当下,温湿度控制正成为横跨多个行业领域的核心命题。作为环境参数中的关键指标,温湿度的精准调控不仅承载着人们对舒适人居环境的期待,更深度关联着工业生产、科研实验及仓储物流等场景的运营效率与安全标准。从应用场景上看,智能家居领域要求温湿度系统实现与人体节律的协同调节,半导体洁净车间要求控制温湿度范围及其波动以保障良品率,而现代化仓储物流体系则依赖温湿度的实时监测预防各种产品的腐损与锈化。温湿度传感器作为实现温湿度监测的关键元器件,其重要性正在各行各业中凸显而出。温湿
    华普微HOPERF 2025-04-07 10:05 66浏览
  • 【拆解】+沈月同款CCD相机SONY DSC-P8拆解 这个清明假期,闲来无事,给大伙带来一个老古董物品的拆解--索尼SONY DSC-P8 CCD相机。这个产品是老婆好几年前在海鲜市场淘来的,由于显示屏老化,无法正常显示界面了,只有显示背光。但是这也无法阻止爱人的拍照。一顿盲操作依旧可以拍出CCD古董相机的质感。如下实拍: 由于这个相机目前都在吃灰。我就拿过来拆解,看看里面都是怎样个设计,满足下电子爱好者的探索。 首先给大伙展示下这台老相机的全貌。正视图  后视图 
    zhusx123 2025-04-06 17:38 78浏览
  • 伴随无线技术的迅速发展,无线路由器市场商机日益庞大。现代消费者在选购无线路由器(Wi-Fi AP)时,通常依赖的是该产品在无干扰的实验室环境中,量测得到的数据报告。然而,这些数据往往是在受控的RF隔离环境中进行测试,无法完全反映真实使用场景。这种情况导致许多消费者抱怨,他们购买的产品效能与宣称的数据不符。在实际应用中,消费者常因Wi-Fi讯号不稳定、传输速度不如预期或设备过热而产生客诉。产品仰赖实验室的数据够吗?无线路由器(Wi-Fi AP)ODM供货商遇到什么挑战?一家台湾知名的无线路由器(W
    百佳泰测试实验室 2025-04-05 00:12 44浏览
  • 医疗影像设备(如CT、MRI、超声诊断仪等)对PCB的精度、可靠性和信号完整性要求极高。这类设备需要处理微伏级信号、高频数据传输,同时需通过严格的EMC/EMI测试。制造此类PCB需从材料选择、层叠设计、工艺控制等多维度优化。以下是关键技术与经验分享。 1. 材料选择:高频与生物兼容性优先医疗影像设备PCB常采用 Rogers RO4000系列 或 Isola FR4高速材料,以降低介电损耗并保证信号稳定性。例如,捷多邦在客户案例中曾为某超声探头厂商推荐 Rogers RO4350B
    捷多邦 2025-04-07 10:22 68浏览
  • 【拆解】+南孚测电器拆解 之前在天猫上买了一盒南孚电池,他给我送了一个小东西—测电器。今天我们就来拆解一下这个小东西,看看它是怎么设计和工作的。 三颗指示灯显示电池剩余电量。当点亮3颗LED时,则表示点亮充足。当点亮2颗LED时,则表示还能用。当点亮1颗LED时,表示点亮地建议更换,当无法点亮LED时,则表示没电了。外壳上还印有正负极,以免用户将电池放反。 这个小东西拆解也很方便,一个螺丝刀稍微撬几下。外壳就下来了,它是通过卡扣连接。 开盖后,测电线路板清晰呈现在眼前。 让我们看看小小的线路板有
    zhusx123 2025-04-05 15:41 50浏览
  • 文/杜杰编辑/cc孙聪颖‍2025年的3月,成功挺过造车至暗时刻的小米创始人雷军,接连迎来人生的高光。(详情见:雷军熬过黑夜,寄望小米SU7成为及时雨)在颜值即正义的舆论导向之下,全国两会期间,雷军凭借得体的衣着、挺拔的身姿赢得赞誉。面对雷军的压人表现,连行事一向沉稳、不愿跟风的海尔,都推出“leadership”组合拳,试图助力自家boss,不落下风。(详情见:两会声音|本届全国两会,周云杰为海尔省了多少广告费?)喜事接连不断,紧接着的3月18日,雷军重磅宣布小米 “史上最强年报”。雷军的公关
    华尔街科技眼 2025-04-03 20:30 39浏览
  • 在科技浪潮奔涌的当下,云计算领域的竞争可谓是如火如荼。百度智能云作为其中的重要参与者,近年来成绩斐然。2024年,百度智能云在第四季度营收同比增长26%,这样的增速在行业内十分惹眼。回顾全年,智能云业务的强劲增长势头也十分明显,2024年第一季度,其收入达到47亿元,同比增长12%;第二季度营收51亿元,同比增长14%。从数据来看,百度智能云在营收方面一路高歌猛进,展现出强大的发展潜力。然而,市场对百度智能云的表现似乎并不完全买账。2024年,尽管百度智能云数据亮眼,但百度股价却在震荡中下行。在
    用户1742991715177 2025-04-06 20:25 61浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦