对比理解输入阻抗、输出阻抗和阻抗匹配,更好理解

可靠性杂坛 2021-09-10 13:02

本文来源面包板社区

一、关于阻抗的基本概念

首先说说电阻(Resistance),在电路中对电流通过具有阻碍作用,并且造成能量消耗的部分,称为电阻。电阻常用R表示,单位欧姆(Ω),导体电阻值由导体的材料、横截面积和长度决定,具体计算不在此赘述。

接下来引出阻抗(Impedance)的概念。在具有电阻、电感和电容的电路里,对电路中的电流所起的阻碍作用叫做阻抗。阻抗常用Z表示,是一个复数,实际称为电阻,虚称为电抗。其中,电容在电路中对交流电所起的阻碍作用称为容抗(Capacitive Reactance) ,电感在电路中对交流电所起的阻碍作用称为感抗(Inductive reactance,电容和电感在电路中对交流电引起的阻碍作用总称为电抗。阻抗的单位是欧姆。

二、输入阻抗和输出电阻

输入阻抗是指一个电路的输入端的等效阻抗。可以理解为在输入端加上电压源U,测量输入端电流I,输入阻抗Rin就等于U/I(将所有电路元件作用的效果总和,等效到一个电阻Rin上)。

 

图1.输入阻抗等效电阻示意图

 

在图1中,Vin为上一级电路的输出信号,作为本级电路的输入信号,Vout为本级电路输出信号的测试点,虚线框内为本级电路的等效输入阻抗,Rin即为电路的输入端等效阻抗。

 

首先,我们设置输入信号为正弦波,幅值A = 1V,频率f = 10KHz:

 

 

由于信号源内部阻抗为0(上一级电路输出阻抗为0,后面会进行讲解),所以在Vout得到的输出信号应该等于原信号(纯电阻电路,幅值和相位均相等),即Vout = Vin,仿真结果如下:

 

图2.输入端等效阻抗仿真结果

我们通过光标A、B和图例可知,输入信号Vin的幅值A1为993.95mV、-991.83mV,峰峰值Vpp1 ≈1.985mV ≈ 2V;输出信号Vout的幅值A2为991.5mV、997.76mV,峰峰值Vpp2 ≈ 1.989mV ≈ 2V。Vpp1 =Vpp2。

有了输入阻抗的概念之后,我们可以更容易的理解输出阻抗的概念,也就是一个电路输出端的等效阻抗。

让我们先暂时回到高中时代,物理老师告诉我们,电池里面有一个内阻,所以我们可以得到图3这样一个电池模型:

 

图3.内阻为50Ω的电池模型

 

我们假设这是一个5V的电池,内部含有50Ω内阻。下面按图4的方式连接电路,将电池加到一个10KΩ的电阻上,然后测一测电阻两端的电压Vout1。

 

图4.电池模型连接图

我们将仿真结果调出来看看。

 

图5.电池模型仿真结果一

从这个结果上看,似乎并不能看出任何东西。那让我们将电池内阻R1分别改为1KΩ、5KΩ、10KΩ、20KΩ,再看一下结果。

 

图6.电池内阻为1KΩ(左上)、5KΩ(右上)、10KΩ(左下)、20KΩ(右下)仿真结果二从图例上可以得知,加在电阻Rload两端的直流电压分别为4.55V(1KΩ)、3.33V(5KΩ)、2.5V(10KΩ)、1.67V(20KΩ)。很明显,通过电阻分压公式,我们很容易就得到上面的几个数字:Vout1=5V*Rload/(R1+Rload)。

好了,从高中回到现在。通过刚才的仿真,可以看出,在本级输入阻抗(电池模型里的Rload)不变的情况下,上级电路的输出阻抗(电池内阻R1)越大,本级所能获取的电压信号就越小,正因为如此,在设计需要考虑信号幅值的电路中,我们就需要考虑阻抗匹配的问题。

 

三、阻抗匹配

阻抗匹配是指信号源或者传输线负载之间的一种合适的搭配方式。阻抗匹配分为低频高频两种情况讨论。


我们先从刚才的电池驱动负载模型(直流电压源驱动负载)入手。我们重新定义负载电阻为R,直流电源电动势为U,内阻为r,我们可以计算出流过负载电阻R的电流I为:

I = U/(R+r)······式1 

从式1可以看出,负载R越小,输出电流I越大。

负载R上的电压Uo为:

Uo = IR = U / [ 1+(r/R) ] ······式2

从式2可以看出,负载R越大,则输出电压Uo越高。

有了I和Uo,我们再来计算一下负载R上消耗的功率P:

P = I²×R = [ U/(R+r) ]²×R

                                 = U²×R/( R²+2×R×r+r² )

         = U²×R/[ (R-r)²+4×R×r ]

        = U²/{ [ (R-r)2/R ] +4×r } ······式3

对于一个给定的信号源,其内阻r是固定的,而负载电阻R是由我们来进行选择的。注意式3中的[ (R-r)2/R ],当R = r,即负载R与信号源内阻r相等时,[ (R-r)2/R ]取得最小值0,此时负载R上可以获得最大输出功率Pmax = U²/(4×r)。即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一(最大功率传输)。此结论同样适用于低频电路和高频电路。当交流电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共扼匹配。


在低频电路中,我们一般不考虑传输线阻抗匹配的问题,只考虑信号源与负载的关系,其原因是低频信号波长相对于传输线来说很长,可以将传输线看做“短线”,信号反射问题不用考虑(就像一杯水倒入长江,连一点波澜也掀不起)。举个例子:有一个频率f = 10KHz的信号,根据波长计算公式λ=u/f(λ为波长;u为电磁波在真空中传播速度,近似等于光速3×10e8m)可以计算出该信号波长λ1 = 3×10e8m/10,000Hz = 3,000m。波长3000m远远大于电路中传输线的长度。


在高频电路中,由于信号频率高,波长短,因此还需要考虑反射问题。当波长短得与传输线长度相当时,反射信号与原信号叠加,将会改变原信号形状。如果传输线的特征阻抗与负载阻抗不相等(即不匹配,也称阻抗失配,会形成反射,降低效率;会在传输线上形成驻波,降低传输线有效功率容量降低;严重时会损坏设备,高速信号会产生振荡,辐射干扰等问题)时,在负载端就会产生反射。(传输线特征阻抗,亦称特性阻抗,是由传输线的结构及材料决定的,而与传输线的长度,以及信号的幅度、频率均无关,其他问题可以参考电磁场与电磁波方面关于传输线理论的书籍)


从上述的分析中,我们可以得出以下结论:

(一)需要输出电流大,选择小的负载R;

(二)需要输出电压大,选择大的负载R;

(三)需要输出功率大,选择与信号源内阻匹配的电阻R。

由于很多学习相关电路设计的初学者常用运算放大器进行信号处理,所以给出一些个人建议:

(一)需要保证输入信号幅值不失真,则加大输入电阻;

(二)信号进行运算后如果驱动能力不够(可以理解为输出阻抗过大),后级加单位增益电压缓冲器(电   压跟   随器);

(三)针对具体电路设计要求,选择优先保证信号幅值不失真,还是选择提高带负载能力,从而对输入阻   抗和   输出阻抗进行考虑;

(四)运算放大器输入阻抗和输出阻抗应该参见对应的Datasheet,并不是所有运放的输入阻抗都很大;

(五)信号频率较高时,最好优先选择最大功率传输方式进行阻抗匹配,避免反射,造成运放自激振荡;

(六)如果出现设计之外的信号衰减,请优先考虑阻抗匹配问题。

四、怎么做阻抗匹配

当电路中出现阻抗不匹配的问题时,我们通常采用以下方法纠正,达到阻抗匹配的目的:

(一)可以考虑用传输线变压器做阻抗匹配(电视机馈线与射频输入端);

(二)可以考虑使用串/并联电容或电感的办法(射频电路调试常用);

(三)可以考虑串/并联电阻的办法(常用)。如果驱动器输出阻抗比较低,可以串联一个大小合适的电阻 (如50Ω、75Ω)与传输线进行匹配;而如果接收器输入阻抗比较高,可以并联一个大小合适的电阻  与传输线进行匹配(“输出端串联匹配,输入端并联匹配”)


—END—


 #推荐阅读:
开关电源八大处损耗,讲的太详细了!
Y电容容量为什么不能太大?
小小蜂鸣器,驱动电路可大有学问
AD常用快捷键总结,超级实用
PCB设计走线常用规则
什么是自举电路



订阅我们,查看更多技术干货
▽▽▽



免费申请开发板


1

2


点击阅读原文,下载《中兴信号完整性》




长按二维码识别关注我们

可靠性杂坛 本平台以推广可靠性相关知识为宗旨,内容涵盖可靠性基础知识、电子装联工艺可靠性、失效物理分析和故障预测与健康管理PHM等方面内容。文章以原创为主,打造精品可靠性专业交流园地。
评论
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 89浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 85浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 90浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 181浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 104浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 153浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 131浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 141浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 134浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 86浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 135浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 121浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 183浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 103浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 111浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦