芯粒时代来临,先进封装将延缓摩尔定律

芯思想 2019-09-23 12:03

 

日前,中国工程院院士许居衍在题为《复归于道封装改道芯片业》的报告中指出经典的2D缩放已经耗尽了现有的技术资源现在通过节点实现性能翻番的方法已经失灵。单片集成电路过去一向强调PPA即更高的性能erformance、更低的功耗Power、更小的面积Area)。这个逻辑方向到了需要修正的时候了!因此3D异质集成、MCPMulti-Chip Package芯片封装)、SiPSystem-in-Package)、PoPPackaging on Packaging)等封装技术成为走出2D同质集成的契机。3D异质集成的基础就是IP复用。许居衍院士在报告中非常看好3D异质集成技术的潜力

 

什么是芯粒

 

近年来,芯粒(Chiplet)或成为半导体产业的热门词。在科研界和产业界看来,这是一种可以延缓摩尔定律失效、放缓工艺进程时间、支撑半导体产业继续发展的有效方案。

 

简而言之,芯粒其实就是一颗商品化的、具有功能(如USB、存储器)特征的裸芯片(die)。从系统端出发,首先将复杂功能进行分解,然后开发出多种具有单一特定功能,可相互进行模块化组装的裸芯片,如实现数据存储、计算、信号处理、数据流管理等功能,并最终以此为基础,建立一个芯粒的芯片网络(未来的电脑系统可能只包含一个CPU芯片和几个GPU,这些GPU都连接到芯粒上,形成芯片网络)。

 

以前设计一个SoC,是从不同的IP供应商购买一些IP,包括软核(代码)或硬核(版图),结合自家研发的模块,集合成一个SoC,然后在某个制造工艺节点上完成芯片设计和生产的完整流程。芯粒模式时代,对于某些IP,可能不需要自己做设计和生产了,而只需要购买别人己经做好的芯片裸片(die),然后通过先进封装形成一个SiPSystem in Package)。所以芯粒也是一种IP,但它是以芯片裸片的形式提供,而不是之前以软件形式提供。

 

芯粒模式可能带给从上游EDA 工具、IC设计到制造工艺、先进封测等产业链环节颠覆式的创新革命。

 

芯粒发展现状

 

理论上,芯粒模式是一种开发周期短且成本较低的方法,提供了先进工艺和主流成熟工艺选择的灵活性,可以将不同节点工艺(10nm14/16nm22nm)、不同材质(硅、砷化镓、碳化硅、氮化镓)、不同功能(CPUGPUFPGARFI/O、存储器)、不同半导体公司的芯片封装在一起。

 

目前,芯粒模式还处于发展早期,美国主要围绕DARPACHIPSCommon Heterogeneous Integration and IP Reuse Strategies,通用异构集成和IP重用战略)项目发展。在CHIPS项目中,有大型半导体企业如英特尔(Intel)、美光(Micron)等,有EDA工具开发企业如新思科技(Synopsys)、楷登电子(Candence),有大型防务公司诺斯罗普·格鲁门(Northrop Grumman)、洛克希德·马丁(Lockheed Martin)、波音(Boeing)等,还有高校如如密西根大学(University of Michigan)、佐治亚理工学院(Georgia Institute of Technology)、北卡罗莱纳州立大学(North Carolina State University)。

 

2018107家公司成立ODSAOpen Domain-Specific Architecture开放专用域架构组织目前组织会员已超过50其目标制定芯粒开放标准、促进形成芯粒生态系统、催生低成本SoC替代方案换言之,就是将一系列模块化芯片或Chiplets,通过裸芯片和裸芯片(die-to-die)的互连方案封装集成。

 

迄今为止,已经有很多公司创建了自己的芯粒生态系统。

 

美满电子

 

美满电子自创始人周秀文(Sehat Sutardja)博士在ISSCC 2015上提出MoChiModular Chip,模块化芯片)架构的概念以来,推出了一系列Virtual SoC产品,MoChi可以是许多应用的基准架构,包括物联网、智能电视、智能手机、服务器、笔记本电脑、存储设备等。

 

图片来源:ISSCC & Marvell

 

但遗憾的是,随着创始人周秀文卸任CEO,已经很久没有听到MoChi相关的新消息。

 

赛灵思

 

2017XilinxHotChip发布第四代堆叠方案VU3xP2018年推出包含316纳米的FPGA2DRAM的首款采用CCIX接口的芯片,旨在从裸芯片层面证明CCIX能够支持多核高性能Arm CPUFPGA加速器实现一致性互联。

 

超微半导体

 

AMD推出使用芯粒技术生产的代号为“罗马Rome”的第二代霄龙EYPC Zen2架构CPU芯片,内部最多八个7nm CPU裸芯片和一个14nm I/O裸芯片,其中前者只有CPU核心、各级缓存和Infinity Fabric总线端口,得益于新工艺可以获得更小面积、更强性能、更低功耗。后者专门独立出来,集成输入输出、内存控制器、PCIe控制器和Infinity Fabric总线端口,可以更方便、更高效地处理各个CPU核心、不同处理器的互连,而工艺之所以采用14nm,是因为它对新工艺不敏感,老工艺则更加成熟,成本也更低,符合不同IP采用最合适工艺的Chiplet设计原则。

 

 

据悉,AMD还将推出使用芯粒技术生产的代号为“米兰Milan”的第三代霄龙EYPC Zen3架构CPU芯片,内部将集成15个裸芯片,比第二代多出6个裸芯片。

 

英特尔

 

英特尔针对互联标准的挑战,首先提出了高级接口总线(Advanced Interface BusAIB)标准。在DARPACHIPS项目中,英特尔将AIB标准开放给项目中的企业使用,旨在推动芯粒标准AIB是一种时钟转发并行数据传输机制,类似于DDR DRAM接口。目前,英特尔免费提供AIB接口许可,以支持广泛的芯粒生态系统,包括设计方法或服务供应商、代工厂、封装厂和系统供应商。此举将加速AIB标准的快速普及,有望在未来成为类似ARMAMBA总线的业界标准。

 

英特尔2014年公布EMIBEmbeded Multi-Die Interconnect Bridge:嵌入式多硅片互联)技术的基础上,于2018年底,更是将其升级为逻辑晶圆3D堆叠技术,命名为Foveros。使用Foveros技术,在二维平面上可以通过EMIB实现裸芯片之间的互联,在三维垂直方向上还可以使用TSVThrough Silicon Via)实现裸芯片之间的堆叠。每个裸芯片所使用的工艺制程可以不一样,通过高级封装技术进行封装,充分利用2D3D的空间。

 

EMIB技术已经在英特尔的Stratix 10 FPGA芯片上使用了,在未来英特尔的CPU/FPGA/GPU/AI等芯片上,我们可以期待Foveros技术的进一步落地。Foveros结合EMIB可以满足各种不同应用、功率范围和外形尺寸的需求,提供低成本、高性能芯片选择。英特尔预计将于2019年下半年推出一系列采用Foveros技术的产品。首款Foveros产品将整合高性能10nm模块芯片和低功耗的22nm基础晶片。

 

2019年英特尔更是推出Co-EMIB技术这是2D EMIB技术的升级版,能够两个或多个 Foveros芯片互连,实现更高的计算性能和数据交换能力还能够以非常高的带宽和非常低的功耗连接模拟器、内存和其他模块基本达到单晶片性能。

 

台积电

 

20196月初于日本京都举办的VLSI Symposium期间,台积电展示了自行设计的一颗芯粒“This”。采用7nm工艺,面积仅仅27.28平方毫米(4.4毫米x6.2毫米),采用CoWos(晶圆级封装)。


 图片来源:网络

 

采用双芯片结构,可以通过添加额外的PHY来进行扩展,芯片不同单元间以及不同芯片之间可以形成互联。其一内置4Cortex A72核心,另一内置6MiB三缓。标称最高主频为4GHz,实测最高居然达到了4.2GHz1.375V)。台积电称,这款芯片是为高性能计算平台设计。

 

与此同时,台积电还开发了新型互连技术LIPINCON每平方毫米Shoreline带宽密度可以达到67Gbps,针脚速度会达到8.0Gbps,物理层的能耗效率是0.56pJ/b预估2020年技术落地。

 

极戈科技

 

极戈科技主打快速芯片设计和制造,提出了一个称为ZiP的集成平台,通过独特的“电路设计+封装+ SDK+算法”,他们利用SaaS的模式提供芯片设计方案,也采用2.5D/3D封装技术。基础芯片是极戈技开发的硅基芯片,上层是第三方的模块芯片,包括传感器、通讯、存储等,从而低成本、高速度地实现小体积,低功耗的系统集成。极戈科技采用Chiplet模式极大地缩短了物联网芯片的研发周期,能够将物联网芯片的设计制造流程从超过1年压缩到2-4周。 

 

图片来源:极戈科技官网

 

国内在系统集成方面也取得了不错的成绩:

 

长电科技是中国营收规模最大的封装公司,在先进封装技术和规模化量产能力中保持领先,在eWLBFOWLCSPBUMPECPPoPSiPPiP等封装技术已有多年的经验与核心专利的保护,对于Chiplet的发展也已奠定了应对的基础。

 

华进半导体成功开发小孔径TSV工艺,进而研发成功转接板成套工艺,并且可基于中道成熟工艺实现量产,实现多颗不同结构或不同功能的芯片系统集成。TSV直径小,间距很密,可以实现高密度芯片封装。芯片与芯片之间的互连通过平面内的线路来实现,可以重新分布电源、接地和信号引脚,这些电学信号可以通过TSV,在底部进行信号输入和输出,从而明显降低输入输出引脚数量。功能芯片无需改变现有的结构和设计,与不同芯片组合搭配,具有很高的灵活度和集成度,适合对尺寸有严苛要求的高频高速的电子产品。所有的芯片和互连线被密封,只有几个端口裸露在外,整个系统有更好的密封性和可靠性。同时,转接板还可以进行散热设计,来进行热管理。

 

图片提供:华进半导体

 

科技开发成功埋入硅基板扇出型3D封装技术,该技术利用TSV作为垂直互联,可以进行异质芯片三维集成,互连密度可以大大高于目前的台积电InFO技术。工艺已经开发完成,与国际客户进行的产品开发进展顺利。

 

埋入硅基板扇出型3D封装结构示意图图片提供:华天科技

 

通富微电在先进封装技术上积极耕耘。公司拥有wafer level先进封装技术平台(WLCSPCu pillar wafer bumpingsolder wafer bumpingAu wafer bumping),也拥有wire bond + FChybrid封装技术,还成功开发了chip to waferFan-out WLPFan-out wafer bumping技术。公司瞄准5G时代的大数据、云计算、数据低延迟要求特点,正积极开发用于高性能计算(HPC)的2.5D interposer高端封装技术。


芯粒的未来

 

SoC(系统级芯片)的集成度越来越高,先进工艺制程的芯片研发成本和制造成本呈几何级倍数不断攀升。过去,设计一款28纳米芯片的研发成本约为5000万美元,7纳米的研发成本上涨到3亿美元,而未来3纳米芯片的研发成本将达到令人咂舌的15亿美元之巨。已经很少有Fabless公司,能够承受得起这么昂贵的前期投入了。

 

 

数据来源:International Business Strategies, Inc.

 

随着芯片制程从10nm7nm5nm再到未来的3nm,每一次制程缩减所需要的成本和开发时间都在大幅提升。而且,当芯片制程接近1nm时,就将进入量子物理的世界,现有的工艺制程会受到量子效应的极大影响。而先进的工艺的玩家越来越少,10纳米以下玩家未来可能只有台积电、三星电子(Samsung)、英特尔、中芯国际(SMIC)。

 

一切都表明后摩尔定律时代确已降临。产业界确实有了很多变化。

 

许居衍院士在报告中还指出,后摩尔时代的单片同质集成向三维多片异构封装集成技术改道是重要趋势,因为三维多片异构封装可以提供更高的带宽、更低的功率、更低的成本和更灵活的形状因子。当前,ODSA组织正在制定定芯粒开放标准、促进形成芯粒生态系统、 催生低成本SoC替代方案,在不久的将来,产吕公司就可以根据需求灵活选择来自多个供应商的最佳芯粒因此,降低了单片SoCNRE的挑战,赢得快速上市时间的好处。许居衍院士还表示,芯粒的搭积木模式集工艺选择、架构设计、商业模式三大灵活性于一体,有助力活跃创新,可以推动微系统的发展推进芯片架构创新加快系统架构创新加速DSA/DSL发展、推动可重构计算的发展软件定义系统发展

 

巧合的是,中芯国际联合首席执行官赵海军博士在日前的题为《立足中国,布局未来,迎接集成电路产业新发展》的报告中同样看好芯粒模式。他在报告中表示,摩尔定律红利剩下的节点不多了,但系统的复杂度需求仍将按原来的轨道继续走下去,多出来的部分功能放在另外的芯片里,然后类似积木一样拼接堆叠起来,循环往复,以至无穷;同时工艺技术的学习曲线成本太高,把一个大芯片分成几个小芯片来生产,可以避免裸芯片的尺寸继续增大,各个裸芯片可以使用不同的最佳工艺,使得良率大大提高,提前完成升级换代;而且新一代大芯片全覆盖开发成本太高,重复使用原有节点设计的IP,可以有效节省费用和加快上市时间;但是,不同人独立设计的单芯片,如CPU和存储器,在组合的时候性能损失严重,就像限速和红灯使得宝马车和丰田车跑得一样慢 ,所以需要多芯片组合的归一化设计。因为不同的芯粒需要协同设计,通过同一个设计师或者使用同一个通信IP,而产品公司不愿意让一家晶圆代工公司把所有的芯粒都做了,所以不会全盘采用晶圆代工公司提供的IP方案,从而为封装代工公司提供了机会,未来封装代工公司可以提供更多的公用IP来支撑芯粒模式。

 

而刚于20197月正式加入武汉弘芯的前台积电共同运营官蒋尚义也表示,美国DARPA推动的电子产业振兴计划(ERI)推动芯粒模式,开始启动主导标准,蒋尚义建议国内建立本土一套自己的芯粒标准,促进中国实现自己的标准。

 

芯粒模式的挑战

 

许居衍院士在报告中强调,芯粒模式成功的关键在于芯粒的标准和接口。作为一种创新,芯粒模式存在多种挑战。

 

首先是来自技术层面。芯粒的组装或封装尚缺乏统一的标准。目前各大玩家都有自家的方案,尽管各家的名称不同,但归总离不开硅通孔、硅桥和高密度FO技术,不管是裸片堆叠还是大面积拼接,都需要将互连线将变得更短,要求互连线做到100%的无缺陷,否则整个芯片无法工作。

 

其次是质量保障问题。相对传统软IP,芯粒是经过硅验证的裸芯片,可以保证物理实现的正确性。但如果其中的一个裸芯片有问题,则整个系统都会受影响,代价很高。因此要保证芯粒100%无故障。当然这其中也包括集成后的测试,封装后,可能有部分芯粒可能完全无法直接从芯片外部管脚直接访问,给芯片测试带来的新的挑战。

 

第三就是散热问题。几个甚至数十个裸芯片封装在一个有限的空间中,互连线非常短,让散热问题变得更为棘手。

 

第四是芯片网络问题。尽管每个芯粒本身设计不会发生死锁,其通信系统都可以很好地工作,但是当它们全部连接在一起形成芯片网络时,就可能出现了交通死锁与流量堵塞问题。超微半导体研究人员最近提出一种消除死锁难题的方案,如果能够彻底解决死锁问题,那么芯粒将为未来计算机设计的发展带来新的动力。

 

第五是供应链重塑问题。在芯粒模式下,EDA工具提供商、芯片提供商、封测提供商都要有所改变。比如芯粒模式中出现的问题可能最终都需要通过EDA工具的改进来给出答案,需要EDA工具从架构探索、到芯片实现、甚至到物理设计提供全面支持。还有来自不同的芯片提供商的裸芯片进入封装提供商工厂的进度同步问题。

 

谁将笑到最后

 

好比扑克游戏,“掼蛋”是在原有的扑克游戏 “跑得快”和“八十分”基础上发展演化而来,掼蛋的最大魅力在于牌际组合间的变数,新手往往先把牌配死,并拟好出牌计划,然后守株待兔,这是初级阶段的呆板打法,完美的静态组合加上动态变化才是取胜之道。

 

芯粒模式就是一个新牌局,芯粒模式及其商业化还在探索中,商业模式创新可能会带来新的出路。

 

芯片设计公司可以将自家的芯片以IP方式提供,IP供应商可以将软核以硬核的方式提供,芯片制造商和封装测试供应商可以提供整体的封装方案,分销商也可以提供进行芯片整合。甚至某些天才工程师完全可以成立独立设计工作室,去做自己擅长的特定功能芯片,然后以芯粒模式出售给芯片产品公司。

 

封装进入新阶段,笑看天下风云起。芯粒模式将极大改变封装业的格局,进而改变整个芯片产业格局。


 

芯思想 中国半导体正能量传播平台。为中国半导体产业服务,我们都是中国半导体产业腾飞的见证人。新闻分析,精彩评论,独家数据,为您定制信息,欢迎拍名片回复,和行业精英交流。
评论
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 106浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 119浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 164浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 116浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 158浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 202浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 58浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 141浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 69浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 92浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 61浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 222浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦