应用于高速数据采集系统的超低抖动时钟电路

射频百花潭 2021-09-07 08:32

     分析了高速数据采集系统对采样时钟抖动的要求,给出了时钟相位噪声和时钟抖动的转换关系;采用 HITTITE的 HMC1035LP6GE频率综合芯片作为主芯片,设计了时钟生成电路,2 500 MHz输出时钟抖动测量值 90 fs(整数工作模式,输入频率 100 MHz,鉴相频率 100 MHz,环路滤波带宽 127kHz,积分区间[10 kHz,10 MHz])。对比时钟生成电路在各种工作模式下的性能,给出了对应的设计指南。

近些年来,国内对高速数据采集系统的研究如火如荼,取得很多的成果。在高速数据采集系统中,有几个性能经常被比较提出,包括:模拟输入带宽、采样率、分辨率、有效位和存储深度等,前 4个指标主要由数据采集系统前端来决定(数字增强型的输入带宽、数字增强型的分辨率和数字增强型的有效位不在讨论之列)。数据采集系统的前端主要包括了前端模拟信号调理电路、模拟数字转换器(Analog todigital converter, ADC)、超低抖动时钟产生电路等。
目前,很多应用场合都使用具有高采集率、高分辨率的 ADC,为充分利用 ADC 的带宽、采样率、分辨率和有效位等性能,必须为 ADC 选择极低噪声的模拟信号调理电路、超低抖动的时钟产生电路和超低纹波电源产生电路等。以下将重点讨论 ADC 的有效位指标,影响 ADC 的有效位(Effective numberof bits,ENOB)的因素很多,包括 ADC 自身因素(ADC 的孔径抖动(Aperture jitter)、ADC 的量化噪声(Quantization noise)、ADC 的非线性等、模拟输入信号噪声、采样时钟抖动、电源纹波噪声等,信噪比(Signal to noise ration, SNR)具体可参考式(1),该公式的描述中未体现电源纹波噪声,或者已经将电源纹波噪声等效在其他因素中 。

式中:f in 为满量程(ADC 输入量程)模拟输入的标准正弦波频率;t jrms 为 ADC 的孔径抖动和采样时钟抖动的均方根值;ε为 ADC 的非线性,包含了积分非线性和微分非线性;N 为 ADC 量化位数;V NOISErms 为模拟输入噪声。在模拟输入满量程(不考虑幅度修正问题)且 t jrms =0、ε=0、V NOISErms =0的情况下,仅考虑 ADC量化噪声贡献,得到 ADC的理想信噪比为

式中信纳比(Signal to noise and distortion ratio,SINAD)为信号功率与噪声、谐波功率之比;ENOB 为ADC的实际有效位数。
在模拟输入满量程且 ε=0、V NOISErms =0的情况下,将量化噪声等效到 t jrms 中,得到仅由抖动贡献的SINAD(如式(3))。此处亦可以考虑成将其余因素全部等效为抖动 t jrms 的贡献,则

在模拟输入满量程且 t jrms =0、V NOISErms =0的情况下,将量化噪声等效到 ε中,得到仅由非线性动贡献的 SINAD(如式(4))。此处亦可以考虑成,将其余因素全部等效为非线性 ε的贡献。

可以看到,f in 、t jrms 、ε、V NOISErms 与外部输入相关,可以通过降低采样时钟抖动、降低电源噪声和提高模拟输入信号品质等途径,提高 ADC 的有效位数 ENOB。应用举例:在输入信号频率 f in =125 MHz且要求 ADC有效位 ENOB=10 bits情况下,根据式(2,3)得到:等效抖动 t jrms =1.02 ps,此处的等效抖动包括了 ADC 的自身因素和各种外界因素的贡献,实际对采样时钟抖动的要求更高。若在输入信号频率 f in =125 MHz 且要求 ADC 有效位 ENOB=14 bits 情况下,根据式(2)和式(3)得到:等效抖动 t jrms =64 fs。可以看出,对于高频输入模拟信号且高有效位的 ADC设计,低抖动的时钟设计是一个关键,降低采样时钟抖动,不仅能够提高 ADC有效位 ENOB,还能够提高 ADC的模拟输入带宽。


1 时钟相位噪声和时钟抖动


数据采集系统中经常提到的时钟相位噪声和时钟抖动指标,两者是同一项时钟性能在频域和时域的不同表现形式,本质是衡量时钟短期稳定性的指标。时钟的长期稳定性使用频率漂移(Frequency drift)来描述,其短期稳定性使用时钟抖动(Clock jitter)或者时钟相位噪声( Clock phase noise)来描述 。
时钟抖动(Clock jitter)。表示时钟抖动的方法有多种:周期抖动(Period jitter)、周期到周期抖动(Cycle to cycle jitter)、时间间隔误差(Time interval error)等,其中周期抖动比较常见。
相位噪声。L(f)定义为在 1 Hz的带宽划分下,频率 f m 处的功率与时钟中心频率 f 0 (亦称载波频率 f c )的功率之比,如式(5),一般用 dBc/Hz 表示 [13] ,有的文献中将 S(f m )写成 PN(f m ),其中 S 代表频谱(Spec‑trum);PN代表相位噪声,S(f)为时钟的功率谱密度 (Power spectrum density,PSD)函数,单位为 W/Hz。

以下讨论的时钟抖动指的是时钟周期抖动,将时钟周期抖动和相位噪声关联起来并进行相互转换,需要借助于相位抖动(Phase jitter)。相位抖动定义为相位噪声功率谱密度上一定频带内的相位噪声能量总和,如式(6),单位弧度,式中,f 1 ,f 2 为频率积分区间的下限、上限。相位抖动是一个频域的概念,频域的相位抖动和时域的周期抖动之间换算关系为

关于相位抖动的频率积分区间[f 1 ,f 2 ],理论上讲,积分区间下限 f 1 应该尽量低,f 1 为 1 Hz、10 Hz等,带宽上限应尽量高,f 2 为 2 f 0 、 +∞ 。实际使用时,需要根据应用场合调整频率积分区间,例如:光纤通道的时钟抖动的积分区间为[637 kHz,10 MHz],10 GHz以太网 XAUI中时钟抖动的积分区间为[1.875MHz,20 MHz],SATA/SAS的时钟抖动的积分区间为[900 kHz,7 MHz] 。


2 时钟产生电路


    根据以上理论分析,为了使 ADC 芯片可以实现最佳性能,需要为其提供超低抖动的时钟信号。选用了 HITTITE 公司(已被 ADI收购)的 HMC1035LP6GE (以下简称 HMC1035)时钟产生芯片(或称为频率综合芯片),设计实现了超低抖动时钟产生电路,主要验证以下功能:

(1)实现整数模式和小数模式下时钟频率输出,比较两者的时钟抖动。

(2)整数模式下鉴相频率(Phase detector frequency, PFD)对输出时钟抖动的影响。

(3)供电电源对 HMC1035 输出的影响等。HMC1035 工作在整数模式、50 MHz 输入、2 500 MHz 输出的时钟抖动典型值为 97 fs[12 kHz,20 MHz],622.08 MHz 输出的时钟抖动典型值为 107 fs[12 kHz,20 MHz]。

图 1为时钟产生电路的原理图。高稳参考信号源采用的是 Crystek公司的 CCHD‑950‑25‑100M:输出频率 为 100 MHz  ,实 际 测 量 其 时 钟 抖 动 为 135 fs[10 kHz,10 MHz];高速信号扇出芯片采用 HITTITE公司的 HMC987LP5GE 芯片,用于低噪声时钟分配,可以完成 1∶9扇出缓冲器功能。

图 1 时钟产生电路原理图

PCB 设计采用了 4 层板结构:L 1 (TOP,Signal)→L 2 (GND)→L 3 (Power)→L 4 (Bottom,Signal),FR‑4 板材,1.6 mm 标准厚度。设计时,TOP 层、Bottom 层走线阻抗控制,单线特征阻抗 50 Ω,差分线特征阻抗100 Ω,Top、Bottom 层表面铺铜接地。电源设计采用外部电源供电,分析了 2 种供电方式对 HMC1035输出频率的影响。关于高速电路的电源去耦的设计,有很多专门的文章进行论述  ,这里不再赘述。
HMC1035窄带环路滤波的设计关系到 PLL 的频率锁定和时钟噪声滤除  :宽带滤波器有利于锁定但不利于滤除噪声,窄带滤波器有利于滤除噪声但不利于锁定,最终使用器件手册上给出的 127 kHz的无源四阶低通环路滤波器。
需要特别指出的是,在工作时,高速芯片引脚的连接,除了给定的 NC 引脚可以悬空之外,在芯片工作时需要使用的引脚,不推荐悬空,引脚一旦悬空,容易导致引脚状态未知,影响系统的稳定。设计的时钟产生电路实物图如图 2所示。

图 2 时钟产生电路实物

3 时钟电路测试


时钟抖动测试仪器采用 ROHDE&SCHWARZ 公司的 FSW13频谱与信号分析仪,采用标准配件,在进行频谱分析时,积分区间[10 kHz,10 MHz]。

3. 1 整数模式和小数模式下的时钟抖动比较

采用直流电压源供电,直流电压源型号 Agilent E3631A,通过 SPI 配置 HMC1035 芯片,测量HMC1035在整数模式和小数模式输出时钟的抖动,其它工作条件都相同,得到表 1。表 1中 HMC10352500 MHz‑50M Hz‑integer 表示 HMC1035 频率综合芯片工作条件为整数模式、50 MHz 鉴相器(Phase detector,PD)频 率 、2 500 MHz 压 控 振 荡 器(Voltage controlled oscillator,VCO)频 率 。HMC1035 2 500 MHz‑50 MHz‑fractional 表示 HMC1035 频率综合芯片工作条件为小数模式、50 MHz PD 频率、2 500 MHz VCO 频率。测量得到高稳参考信号输出的 100 MHz对应的时钟抖动典型值为 135 fs(以下简称为 100 MHz VCXO jitter),高速信号扇出后的 100 MHz信号时钟抖动典型值为 152 fs(以下简称为HMC987 fanout jitter),以下表 1重复部分不再赘述。

表 1 整数模式和小数模式对 HMC1035芯片输出性能的影响

整数模式下锁相环(Phase lock loop, PLL)的输出分频率受限于 PD 的频率步进。小数模式的优点在于可以提高 PLL 的输出分辨率,显著改善锁定时间,但是小数模式下工作的 PLL 的输出杂散水平较高,影响时钟抖动指标。可以看到:小数模式下的输出时钟抖动明显高于整数模式下的输出时钟抖动 。原因在于整数模式下,不使用 Σ‑Δ 调制器,降低了引入的时钟抖动。按照抖动的平方根值理论,可以看到 Σ‑Δ 调制器的抖动贡献约为 (123 2 -98 2 ) 0.5 =74 fs(2 500 MHz输出频率,单次,未考虑统计涨落)。此处同时给出 2 488,622,77.76 MHz的输出时钟抖动测量值,是为了与手册给出的典型值进行对比。

3. 2 整数模式下 PD工作频率对时钟抖动的影响

采用直流电压源供电,HMC1035工作在整数模式下,PD 工作频率为 100,50,10,1 MHz,测量输出时钟抖动性能,结果如表 2所示,分析 PD工作频率对输出时钟抖动的影响。

表 2 PD工作频率对 HMC1035芯片输出性能的影响

PD 有 2个输入端,一端接参考输入频率 f xtal 的 R 分频,一端接 VCO 工作频率 f VCO 的 N 分频。PD 稳定工作在整数模式时,PD 无偏置,电流为 0,此时,只需要考虑 PD 工作频率 f PD 对输出时钟抖动的贡献,f PD 表示为

PD 将 f VCO 的 N 分频的反馈频率与输入参考频率的某一分频形式进行鉴相,输出一个电流,经过积分和外部环路滤波,产生一个电压,这个电压驱动 VCO 提高或者降低频率,使 PD 的输出电流的等效电压接近 0,达到平衡。提高 f PD ,可以降低输出时钟相位噪声,相位噪声是在 PD 的最高工作频率上加20 logR,因此 R 越大,PD 工作频率越低,相位噪声越差,R 增大一倍,相位噪声降低 3 dB,应该使用可行的 PD 最高工作频率,但实际往往需要均衡。文章表格描述的大部分 HMC1035的输出时钟抖动都是基于 50 MHz的 f PD ,该 f PD 为器件手册推荐工作频率;但是 f PD 为 100 MHz时,HMC1035的输出时钟抖动指标更优,只是锁定时间增加,功耗增加。

3. 3 整数模式下供电电源对时钟抖动的影响

HMC1035芯片在正常工作时,其功耗比较高,为保证 PLL的输出性能,需要选择好供电方式,并做好电源的去耦和 PCB 散热等工作。在保证电源去耦的前提下,分析了直流电压源(Agilent E3631A)供电和 DC/DC 开关电源(PTH08T240W)供电对 PLL 芯片输出性能的影响,如表 3所示。另外给出了直流电压源供电时 HMC1035的典型相位噪声曲线(图 3)。

表 3 直流供电和 DC/DC电源供电对 HMC1035芯片输出性能的影响

可以看出,开关电源供电对整个系统的性能影响很大,不仅增加了 HMC1035的输出时钟抖动,而且增加了信号路径上的所有时钟抖动。开关电源供电对 HMC1035 的输出时钟抖动贡献较大,预估约为 90 fs(2 500 MHz 输出频率,单次,未考虑统计涨落),其贡献主要来源于开关频率及其高次谐波的影响。采用外部直流电压源供电后,HMC1035 的输出频谱上,在 300kHz 的开关频率附近依然有毛刺,如图 3 所示。这是因为 SPI 配置 HMC1035、HMC987 的工作状态的芯片由开关电源供电,SPI配置线路上未做好隔离处理,电源噪声通过 SPI 配置线路耦合到 HMC1035电路板上引起 。

图 3 HMC1035的典型相位噪声示意图

3. 4 分析与讨论

受限于测量仪器的指标限制,本次实验给出的时钟抖动的积分区间为[10 kHz,10 MHz],器件手册给出的时钟抖动指标的积分区间为[12 kHz,20 MHz],根据测量得到的噪声功率谱密度图,可以从理论上推出积分区间[12 kHz,20 MHz]的时钟抖动 。

根据式(5),如图 3 所示,计算得到,在[10 kHz,12 kHz]区间,噪声功率的贡献约为 6×10 -9 dBc 量级;在[10 MHz,20 MHz]的区间,噪声功率的贡献约为 6×10 -8 dBc 量级。大致计算得到,在[10 kHz,10 MHz]区间,噪声功率总体为 10 -6 dBc量级。在[10 kHz,10 MHz]区间噪声功率基础上,减去[10 kHz,12 kHz]区间的噪声功率贡献,加上[10 MHz,20 MHz]区间的噪声功率贡献,得到[12 kHz,20 MHz]区间的时钟抖动数值。可以定量分析,[10 kHz,12 kHz]区间的噪声功率和[10 MHz,20 MHz]区间的噪声功率,相对于[10 kHz,10 MHz]区间的噪声功率小很多,理论上讲,[12 kHz,20 MHz]区间时钟抖动比[10 kHz,10 MHz]区间的时钟抖动指标稍低一些,但相差无几。
以 ADS5400 为例说明超低抖动时钟在高速数据采集系统中的应用,ADS5400 孔径抖动 aperturejitter为 125 fs rms 。当 f in =125 MHz,ENOB=10 bits时,根据式(2,3),得出 t jrms =1.02 ps[12 kHz,20 MHz]。与 t jrms 相比,ADC 的孔径抖动可以忽略,HMC1035输出采样时钟抖动亦可以忽略,此处影响 ADC 有效位的因素主要为模拟输入噪声和电源纹波噪声等其他因素。当 f in =125 MHz,ENOB=14 bits时,根据式(2,3),得出 t jrms =64 fs[12 kHz,20 MHz]。与 t jrms 相比,ADC 的孔径抖动、HMC1035输出采样时钟抖动已经无法满足要求。当 f in =1 250 MHz,ENOB=10 bits 时,根据式(2,3),得出 t jrms =102 fs[12 kHz,20 MHz],与 t jrms 相比,ADC 的孔径抖动、HMC1035 输出采样时钟抖动已经无法有效满足要求。同理,当 f in =1 250 MHz,ENOB=14 bits 时,根据式(2,3),得出 t jrms =6.4 fs[12 kHz,20 MHz],目前所知的ADC 芯片和时钟产生电路都无法满足要求,这种情况下,可以采用下变频等方法对输入高频信号进行下变频之后采样,降低对 ADC 芯片和时钟产生电路的要求。该方法在加速器的低电平控制(Low level radio frequency,LLRF)、数字移动通信等场景中应用广泛。

可以看到,针对低频输入信号、对有效位要求不高等情况时,采样时钟抖动对 ADC 有效位的影响较小,甚至可以忽略,这时需要注意低噪声的模拟信号调理电路设计和电源完整性设计等。针对高频输入信号、对有效位要求高等情况时,采样时钟抖动对 ADC 有效位的影响很大,需要精心设计采样时钟等以充分提高数据采集系统的模拟输入带宽和有效位。


4 结束语


    本文分析了影响高速数据采集系统有效位和带宽的因素,推导给出时钟抖动对有效位的影响。并且研究时钟相位噪声和时钟抖动之间的转换关系,给出了理论依据和转换过程。高速数据采集系统是一个系统工程,需要设计极低噪声的模拟信号调理电路、超低抖动的时钟产生电路、超低纹波电源产生电路等。针对高频输入信号进行数据采集、对有效位要求高等情况,选择合适的时钟产生方式、获取超低抖动采样时钟尤其重要。


作者:李海涛,李斌康 ,阮林波,田耕,张雁霞

声明:


本号对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有。

投稿/招聘/推广/宣传 请加微信:15989459034

射频百花潭 国内最大的射频微波公众号,专注于射频微波/高频技术分享和信息传递!
评论 (0)
  • 文/郭楚妤编辑/cc孙聪颖‍不久前,中国发展高层论坛 2025 年年会(CDF)刚刚落下帷幕。本次年会围绕 “全面释放发展动能,共促全球经济稳定增长” 这一主题,吸引了全球各界目光,众多重磅嘉宾的出席与发言成为舆论焦点。其中,韩国三星集团会长李在镕时隔两年的访华之行,更是引发广泛热议。一直以来,李在镕给外界的印象是不苟言笑。然而,在论坛开幕前一天,李在镕却意外打破固有形象。3 月 22 日,李在镕与高通公司总裁安蒙一同现身北京小米汽车工厂。小米方面极为重视此次会面,CEO 雷军亲自接待,小米副董
    华尔街科技眼 2025-04-01 19:39 189浏览
  • 探针本身不需要对焦。探针的工作原理是通过接触被测物体表面来传递电信号,其精度和使用效果取决于探针的材质、形状以及与检测设备的匹配度,而非对焦操作。一、探针的工作原理探针是检测设备中的重要部件,常用于电子显微镜、坐标测量机等精密仪器中。其工作原理主要是通过接触被测物体的表面,将接触点的位置信息或电信号传递给检测设备,从而实现对物体表面形貌、尺寸或电性能等参数的测量。在这个过程中,探针的精度和稳定性对测量结果具有至关重要的影响。二、探针的操作要求在使用探针进行测量时,需要确保探针与被测物体表面的良好
    锦正茂科技 2025-04-02 10:41 55浏览
  • 据先科电子官方信息,其产品包装标签将于2024年5月1日进行全面升级。作为电子元器件行业资讯平台,大鱼芯城为您梳理本次变更的核心内容及影响:一、标签变更核心要点标签整合与环保优化变更前:卷盘、内盒及外箱需分别粘贴2张标签(含独立环保标识)。变更后:环保标识(RoHS/HAF/PbF)整合至单张标签,减少重复贴标流程。标签尺寸调整卷盘/内盒标签:尺寸由5030mm升级至**8040mm**,信息展示更清晰。外箱标签:尺寸统一为8040mm(原7040mm),提升一致性。关键信息新增新增LOT批次编
    大鱼芯城 2025-04-01 15:02 186浏览
  • 在智能交互设备快速发展的今天,语音芯片作为人机交互的核心组件,其性能直接影响用户体验与产品竞争力。WT588F02B-8S语音芯片,凭借其静态功耗<5μA的卓越低功耗特性,成为物联网、智能家居、工业自动化等领域的理想选择,为设备赋予“听得懂、说得清”的智能化能力。一、核心优势:低功耗与高性能的完美结合超低待机功耗WT588F02B-8S在休眠模式下待机电流仅为5μA以下,显著延长了电池供电设备的续航能力。例如,在电子锁、气体检测仪等需长期待机的场景中,用户无需频繁更换电池,降低了维护成本。灵活的
    广州唯创电子 2025-04-02 08:34 136浏览
  • 引言在语音芯片设计中,输出电路的设计直接影响音频质量与系统稳定性。WT588系列语音芯片(如WT588F02B、WT588F02A/04A/08A等),因其高集成度与灵活性被广泛应用于智能设备。然而,不同型号在硬件设计上存在关键差异,尤其是DAC加功放输出电路的配置要求。本文将从硬件架构、电路设计要点及选型建议三方面,解析WT588F02B与F02A/04A/08A的核心区别,帮助开发者高效完成产品设计。一、核心硬件差异对比WT588F02B与F02A/04A/08A系列芯片均支持PWM直推喇叭
    广州唯创电子 2025-04-01 08:53 179浏览
  • 提到“质量”这两个字,我们不会忘记那些奠定基础的大师们:休哈特、戴明、朱兰、克劳士比、费根堡姆、石川馨、田口玄一……正是他们的思想和实践,构筑了现代质量管理的核心体系,也深远影响了无数企业和管理者。今天,就让我们一同致敬这些质量管理的先驱!(最近流行『吉卜力风格』AI插图,我们也来玩玩用『吉卜力风格』重绘质量大师画象)1. 休哈特:统计质量控制的奠基者沃尔特·A·休哈特,美国工程师、统计学家,被誉为“统计质量控制之父”。1924年,他提出世界上第一张控制图,并于1931年出版《产品制造质量的经济
    优思学院 2025-04-01 14:02 139浏览
  • 文/Leon编辑/cc孙聪颖‍步入 2025 年,国家进一步加大促消费、扩内需的政策力度,家电国补政策将持续贯穿全年。这一利好举措,为行业发展注入强劲的增长动力。(详情见:2025:消费提振要靠国补还是“看不见的手”?)但与此同时,也对家电企业在战略规划、产品打造以及市场营销等多个维度,提出了更为严苛的要求。在刚刚落幕的中国家电及消费电子博览会(AWE)上,家电行业的竞争呈现出胶着的态势,各大品牌为在激烈的市场竞争中脱颖而出,纷纷加大产品研发投入,积极推出新产品,试图提升产品附加值与市场竞争力。
    华尔街科技眼 2025-04-01 19:49 194浏览
  • 北京贞光科技有限公司作为紫光同芯授权代理商,专注于为客户提供车规级安全芯片的硬件供应与软件SDK一站式解决方案,同时配备专业技术团队,为选型及定制需求提供现场指导与支持。随着新能源汽车渗透率突破40%(中汽协2024数据),智能驾驶向L3+快速演进,车规级MCU正迎来技术范式变革。作为汽车电子系统的"神经中枢",通过AEC-Q100 Grade 1认证的MCU芯片需在-40℃~150℃极端温度下保持μs级响应精度,同时满足ISO 26262 ASIL-D功能安全要求。在集中式
    贞光科技 2025-04-02 14:50 85浏览
  • 职场之路并非一帆风顺,从初入职场的新人成长为团队中不可或缺的骨干,背后需要经历一系列内在的蜕变。许多人误以为只需努力工作便能顺利晋升,其实核心在于思维方式的更新。走出舒适区、打破旧有框架,正是让自己与众不同的重要法宝。在这条道路上,你不只需要扎实的技能,更需要敏锐的观察力、不断自省的精神和前瞻的格局。今天,就来聊聊那改变命运的三大思维转变,让你在职场上稳步前行。工作初期,总会遇到各式各样的难题。最初,我们习惯于围绕手头任务来制定计划,专注于眼前的目标。然而,职场的竞争从来不是单打独斗,而是团队协
    优思学院 2025-04-01 17:29 177浏览
  • 退火炉,作为热处理设备的一种,广泛应用于各种金属材料的退火处理。那么,退火炉究竟是干嘛用的呢?一、退火炉的主要用途退火炉主要用于金属材料(如钢、铁、铜等)的热处理,通过退火工艺改善材料的机械性能,消除内应力和组织缺陷,提高材料的塑性和韧性。退火过程中,材料被加热到一定温度后保持一段时间,然后以适当的速度冷却,以达到改善材料性能的目的。二、退火炉的工作原理退火炉通过电热元件(如电阻丝、硅碳棒等)或燃气燃烧器加热炉膛,使炉内温度达到所需的退火温度。在退火过程中,炉内的温度、加热速度和冷却速度都可以根
    锦正茂科技 2025-04-02 10:13 50浏览
  • 随着汽车向智能化、场景化加速演进,智能座舱已成为人车交互的核心承载。从驾驶员注意力监测到儿童遗留检测,从乘员识别到安全带状态判断,座舱内的每一次行为都蕴含着巨大的安全与体验价值。然而,这些感知系统要在多样驾驶行为、复杂座舱布局和极端光照条件下持续稳定运行,传统的真实数据采集方式已难以支撑其开发迭代需求。智能座舱的技术演进,正由“采集驱动”转向“仿真驱动”。一、智能座舱仿真的挑战与突破图1:座舱实例图智能座舱中的AI系统,不仅需要理解驾驶员的行为和状态,还要同时感知乘员、儿童、宠物乃至环境中的潜在
    康谋 2025-04-02 10:23 70浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦