手撕Buck!Buck公式推导过程

原创 硬件工程师炼成之路 2021-09-06 20:30

这个文章我本来没打算写的,因为之前我已经写了《手撕Boost!Boost公式推导及实验验证》,在我看来,Buck与boost是完全类似的,明白一个,另外一个也就明白了。

不过后来还是陆续有粉丝问我有没有buck,那么今天就来推导下buck的公式。毕竟大家基础也是各不相同,举一反三有时还比较困难,有现成的更好。

如果没看过手撕boost的,我建议可以先看看,因为有很多的前提条件在那里面有详尽的解释。这些前提条件在buck里面也是适用的,这篇文章就不会再赘述了,罗里吧嗦也不好。

先简要说明一下文章会说哪些内容

1、buck的拓扑结构,工作原理2、输入输出电容取值的推导过程,电感感量的计算过程3、boost各处电压,电流波形4、buck,boost公式汇总5、实际电路应用情况

Buck的拓扑结构

Buck是直流转直流的降压电路,下面是拓扑结构,作为硬件工程师,这个最好是能够记下来,了然于胸

为啥要记下来,自然是因为这个电路太基础了,并且谁都会用到,更重要的一点,面试可能会考。。。

上图是个异步buck,同步buck就是将里面的二极管换成MOS管。

我用异步buck来分析的原因,就是觉得它要复杂一点,多了一个二极管导通压降,如果异步的明白了,那么同步的自然也明白了。

并且,根据这个拓扑推导的公式也是适用同步Buck的,只需要让公式里面的二极管压降为0即可。

首先,还是来看下工作原理

工作原理其实非常简单,上图中MOS管就是一个开关,只要这个速度够快(开关频率够高),控制好导通与关断时间(电感充放电时间),配合输出滤波电容,就可以得到基本稳定的Vo了,也就是输出电压。


下面来看下两个过程开关导通开关断开

先看开关导通

开关导通时,二极管不导通,我们看电感,电感左边是Vi,右边是Vo,因为是降压,所以左边大于右边,那么电感两端电压是Vi-Vo,为恒定值。如果把电感电流向右定义为正,那么电感电流是线性增大的,因为L*di/dt=Vi-Vo,那么di/dt=(Vi-Vo)/L=常数。

开关断开时,电感要续流,会产生反向电动势,让二极管导通,二极管导通电压是Vd。因为二极管阳极接地,所以阴极电压是-Vd,也就是电感左边的电压就是-Vd,右边的电压是Vo不变,因此电感两端电压是-Vd-Vo。此时电感电流是线性减小的,因为L*di/dt=-Vd-Vo,di/dt=-(Vo+Vd)/L=常数,并且是负值,所以是线性减小的。

推导公式

我们推导公式,是为了选型,选择输入滤波电容,输出滤波电容,电感

那么先把已知条件列出来

首先是输入电压Vi,输出电压Vo,输出电流Vo/R,咱总得知道自己想要什么吧,所以这些在设计之初都是已知的。

其次是开关频率f,这个在芯片选型之后就是确定的了。

再然后就是设计的目标,输入纹波大小△Vi,输出纹波大小△Vo。

我们根据这些已知的量,就可以求得电感感量,输入滤波电容大小,输出滤波电容大小。

因为计算的基本原理其实就是电容和电感的充放电。所以,我们首先要求的就是开关导通的时间和断开的时间,或者说是占空比

这个也非常简单,我们可以这么想

在开关导通的时候,电感两端电压是Vi-Vo。

在开关断开的时候,输出端电压为Vo,二极管导通,那么电感右侧就是Vo,电感左侧接的是-Vd,所以此时电感两端电压是Vo+Vd。

整个电路稳定之后,因为负载电流恒定,那么一个周期时间之内,在开关导通时电感电流增加的量,要等于开关截止时,电感电流减小的量,即电感充了多少电就要放多少电,不然负载的电流或者电压就要发生变化。

即一个周期内,电感电流增大量等于减小量。

然后又因为U=Ldi/dt,di/dt=U/L,L不变,所以电感电流变化速度与电压成正比。

简单说就是,电感电流上升或下降的斜率与电压成正比

斜率与电压成正比,电感电流上升的高度与下降高度又相同,那上升时间不就和电压成反比了吗?

所以,自然就有了:

Ton/Toff=(Vo+Vd)/(Vi-Vo)

我们变换一下,就得到了江湖所传的“伏秒法则

再根据T=Ton+Toff=1/f

我们可以分别求得导通时间,关断时间,占空比。

如果是同步buck,那么Vd=0,则会见到我们经常看见的公式:

功率电感选择

我们电感选型首先需要考虑两个参数,电感感量电感电流

电感电流分为2个,平均电流IL纹波电流△IL

先看平均电流

显然,输出电压Vo基本不变,也就是说输出滤波电容两端电压没有变化,那么电容的平均电流为0,根据输出节点的基尔霍夫电流定律,节点电流和为0,那么电感的平均电流就等于负载的平均电流Io。

IL=Io=Vo/R


然后我们再来求电感的纹波电流△IL

从前面知道,电感电流就是个三角波,在开关导通时电感电流增大,在关断时,电感电流减小。

那纹波电流的大小求起来就简单了,就等于在开关导通时电感电流增大的值,也等于关断时电感电流减小的值。

我们就计算其中一个,计算开关导通时电感电流增大了多少吧。

这个也非常easy,开关导通,电感两端电压是Vi-Vo,导通时间Ton前面已经求出来了。

根据U=Ldi/dt就可以求出电感电流纹波△IL=di=U/L*Ton

可以看到,电感电流的纹波跟负载电流的大小没有关系

同时呢,我们也很容易得到电感的峰值电流,就是电感的平均电流加上纹波电流的一半嘛,即ILp=IL+△IL/2=Io+△IL/2。

也就是:

计算这个峰值电流有什么用呢?

电感选型时,电感的饱和电流必须大于这个ILp,并且要留一定的裕量。

现在我们已经写出来了电感的平均电流IL,电感的纹波电流△IL,△IL应该是IL的20%-40%为宜

即:△IL=(0.2~0.4)*IL

根据这个范围,就能求得我们的电感值范围了。

输入滤波电容计算

我们在确定输入滤波电容的时候,是有一个假设的,这个假设是什么呢?

输入电源默认来自远方,是没法提供快速变化的电流的

实际应用中,输入电源可能距离很远,有了很长的走线,走线越长,寄生电感就越大,也就是说输入电源不能快速响应这个Buck输入电流的需求。

因此,我们在一个周期时间内,可以将输入电源的电流看作是恒定的,稳定状态下,这个电流也等于电源输入的平均电流Ii,我们先求一下电源输入的平均电流Ii

怎么求电源的输入电流呢?

很简单,使用能量守恒定律就可以了。

不考虑MOS管的损耗的话,那么用耗电的器件有2个,一个是二极管,一个是负载R。

由工作原理可知,二极管只在MOS开关断开时有电流流过,其电流等于电感电流,并且一个周期内有电流流过的时间为Toff,所以二极管的平均电流也等于电感的平均电流,为IL=Io。

一个周期内二极管流过电流的时间为Toff,电流为IL,导通压降为Vd。

所以二极管的功率为:

Pd=Vd*Io*Toff*f =Vd*Io *(Vi-Vo)/(Vi+Vd)

负载的功率是Pr=Io*Vo

电源输入功率Pi=Vi*Ii

根据能量守恒,Pi=Pr+Pd,可以得到输入电源的平均电流Ii为

现在已经求出Ii,在一个周期内,电源的输入电流可以看成恒定值,为Ii

了解了这个前提条件,我们回到目标:计算输入滤波电容的容量

我们先理清下思路,输入电压纹波就是输入电容上面的电压变化。电容上面的纹波变化可以分成两个部分

一个是电容放电或者是充电,存储了电荷量发生了变化,这个变化会导致电压变化,可以用公式Q=CUq来表示,Uq即是电压的变化。

另一个是电容有等效串联电阻ESR,电容充放电时有电流流过,电流流过ESR会产生压降,这个压降用Uesr表示吧。

所以,电压纹波应该是:

△Vi=Uq+Uesr

1、电容电荷量变化引起的压降Uq

我们看输入节点,这个节点的电流有3个,一个是来自电源Vi输入的,前面说了,在一个周期内,它可以看作是恒定的,一个节点是电容,另外一个节点是开关

根据基尔霍夫电流定律,节点电流和为0,并且电源输入的电流恒定为Ii,那么输入电容电流的变化量必然等于开关电流的变化量,因为最终3者的和为0。

也就是说,开关断开时,开关电流为0,那么电源输入的电流全都流进输入电容,电容被充电,此时电容的充电电流为Ii。而开关导通时,电感需要续流,这个电流由电源输入和输入滤波电容二者共同提供,电容此时放电。

并且,开关切换的时候,开关电流是突变的。而三者电流和为0,那么电容的电流必然也是突变的。

我们画出三者的电流波形如下:

一个周期内,电容的充电电荷量和放电电荷量必然一样,我们计算出其中一个就行了。

显然,充电的时候更好计算,因为充电时开关断开,电容的电流就是电源的输入电流,是恒定的,为Ii。

根据Q=I*t,那么充入的电荷量为Q=Ii*Toff,电容充入电荷,会导致电压变大,这个电压的增量这里取个名字叫Uq,那么Q=Uq*C,也就是Uq=Q/C=Ii*Toff/C

最终可以求得Uq


2、电流流过电容的ESR造成的压降Uesr

想要知道ESR造成的纹波大小,我们只需要知道流过电容的电流就知道了,因为电压等于电流乘以ESR。

我们把电容的电流波形单独画一下。

这个波形下面解释下

开关断开的时候,电源输入电流Ii全部进入输入滤波电容,因为li恒定,因此输入滤波电容的电流就是恒定为li,此时电容充电,如果我们把充电电流定义为正,那么电流就是+li。

开关导通之后,电感原本从二极管续流,变成了从MOS管续流,因为之前电感一直在放电,所以切换时电感电流最小,等于IL-△IL/2,在整个Ton时间段内,电感是被充电的,所以电感电流一直在增大,直到达到峰值电流IL+△IL/2。

并且在Ton时间内,电感电流走的是MOS管通路,因此,Mos管电流最大也是IL+△IL/2。根据输入节点电流和为0,这个电流等于输入电源电流Ii和滤波电容的放电电流,所以滤波电容的最大放电电流为IL+△IL/2-Ii。因为前面定义了充电电流为正,那么放电电流就为负,即滤波电容电流是:-(IL+△IL/2-Ii)。

知道了电流,ESR,那么我们就知道了纹波大小

在开关断开时,ESR上面产生的压降是恒定的,为:Ii*ESR

在开关导通后,ESR上面产生的最大压降是:-(IL+△IL/2-Ii)*ESR

两者相减,得到的就是一个周期内ESR引起的纹波大小,也就是:

Uesr=(IL+△IL/2)*ESR

计算过程如下:


好,我们已经算出Uesr和Uq。

那么根据△Vi=Uesr+Uq,我们就可以△Vo的表达式了,如果知道△Vo,我们也能得到输入滤波电容Ci的大小或者是ESR了。

输入总的纹波公式

这个公式看着有点复杂,有两个参数都跟电容本身有关系,ESR和容量Ci

考虑到我们的电容实际使用情况

陶瓷电容ESR小,容量小,Uq对纹波起决定作用,所以输入纹波电压可以近似为Uq,如果我们要限定纹波不能大于△Vi,那么Uq≤△Vi。

铝电解电容容量大,ESR大,Uesr对纹波起决定作用,所以输入纹波电压可以近似Uesr,如果我们要限定纹波不能大于△Vi,那么Uesr≤△Vi

根据上面两点,我们就可以去选择合适的电容了。

陶瓷电容根据容量值去选

铝电解电容根据ESR去选

好,现在输入电容的理论计算已经搞定了,我们接着看输出滤波电容。

输出滤波电容

相比输入纹波△Vi大小,我们可能更关心输出纹波△Vo的大小,毕竟是要带负载的。同样,纹波由电容容量和ESR决定。

1、电容电荷量变化引起的Uq

我们看输出节点,这个节点的电流有3个,一个是来自负载的,它可以看作是恒定的,为Io=Vo/RL,一个节点是输出滤波电容,另外一个节点是电感。

根据基尔霍夫电流定律,节点电流和为0,并且负载的电流恒定,那么电感电流的变化量必然等于电容电流的变化量,因为最终3者的和为0。

我们画出三者的电流波形如下:

根据节点电流和为0,那么输出电容的电流变化就是功率电感的电流变化(你增大时我减小,你减小时我增大)。我们从上图也可以很直观的看出来。

显然,电容电流大于0时,电容在充电,电容电流小于0时,电容在放电。并且图中也可以看到,电容充电和放电时间长度是一样的,都是周期的一半,T/2

那充放电的电荷量是多少呢?

从前面知道,输出电容的电流变化就是功率电感的电流变化,因为电感的纹波电流是△IL,那么电容的纹波电流也是 △IL。又因为电容的平均电流是0,所以电容的充电电流和放电电流都是△IL/2。

需要注意,电容电流是在大于0时充电,电流小于0时放电,也就是图中阴影部分,充电与放电的切换的时刻并不是开关导通与断开的时候,而是在中间时刻。

然后电容放电/充电的总电荷量Q等于电流乘以时间,这不就是图中阴影三角形的面积吗?

三角形底部是时间,充电/放电时间等于T/2

三角形的高为电感纹波电流的一半,△IL/2。

所以总放电量为Q=1/2*底*高

再结合Q=CUq,即可求得Uq了。

具体计算如下图所示:


2、电流流过电容的ESR造成的压降Uesr

前面波形图知道,电容的充电电流最大是△IL/2,放电电流最大就是-△IL/2,负号表示电流方向,方向的不同,引起的压降的电压也是相反的。

那么ESR引起的总的压降是:

Uesr=△IL/2*ESR-(-△IL/2*ESR)=△IL*ESR

最终,我们求得Uesr的公式如下:

好,我们已经算出Uesr和Uq,那么根据△Vo=Uesr+Uq,就可以求出总的输出纹波大小△Vo。

根据上面两点,我们就可以去选择合适的电容了。

陶瓷电容根据容量值去选

陶瓷电容ESR小,容量小,Uq对纹波起决定作用,所以可以近似为Uq,如果我们要限定纹波不能大于△Vo,那么Uq≤△Vo

铝电解电容根据ESR去选

公式到这里就基本推完了。

公式汇总

下面把Buck所有的公式汇总下,如下图:

之前写过boost的公式推导,不过没汇总公式,现在也汇总如下:

实际电路应用

公式现在都已经推出来了,这些公式都是从拓扑结构里面推出来的,我们也会在很多芯片手册中看到这些公式,那么我们设计时,按照这些公式选择电容可以吗?

答案是:no,no,no!

原因在于,实际我们使用的器件都不会是理想的。

就陶瓷电容来说,一个直流偏压特性,可能就使得电容实际容量只有标称值的30%甚至更低。

还有电容会有ESL等参数,电路本身还有会其它的损耗等等,这些都会使得buck/boost实际输出与理论推导有较大的出入。

虽然这些公式不能直接套用,但是我们根据它们也能大致知道是个什么情况,所以其作用还是有的,我们设计时也需要去算一算的。

这些因素具体有多大的威力,以及实际电路该如何考量。因为我在之前的《手撕Boost!Boost公式推导及实验验证》一文中,进行了大量的实验以及分析,现在就不再说了,有兴趣可以去翻一翻。

硬件工程师炼成之路 硬件工程师的分享、交流、学习的地方。
评论
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 114浏览
  • Snyk 是一家为开发人员提供安全平台的公司,致力于协助他们构建安全的应用程序,并为安全团队提供应对数字世界挑战的工具。以下为 Snyk 如何通过 CircleCI 实现其“交付”使命的案例分析。一、Snyk 的挑战随着客户对安全工具需求的不断增长,Snyk 的开发团队面临多重挑战:加速交付的需求:Snyk 的核心目标是为开发者提供更快、更可靠的安全解决方案,但他们的现有 CI/CD 工具(TravisCI)运行缓慢,无法满足快速开发和部署的要求。扩展能力不足:随着团队规模和代码库的不断扩大,S
    艾体宝IT 2025-01-10 15:52 41浏览
  • HDMI 2.2 规格将至,开启视听新境界2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新HDMI规范为规模庞大的 HDMI 生态系统带来更多选择,为创建、分发和体验理想的终端用户效果提供更先进的解决方案。新技术为电视、电影和游戏工作室等内容制作商在当前和未来提供更高质量的选择,同时实现多种分发平台。96Gbps的更高带宽和新一代 HDMI 固定比率速率传输(Fixed Rate Link)技术为各种设备应用提供更优质的音频和视频。终端用户显示器能以最
    百佳泰测试实验室 2025-01-09 17:33 114浏览
  • 职场是人生的重要战场,既是谋生之地,也是实现个人价值的平台。然而,有些思维方式却会悄无声息地拖住你的后腿,让你原地踏步甚至退步。今天,我们就来聊聊职场中最忌讳的五种思维方式,看看自己有没有中招。1. 固步自封的思维在职场中,最可怕的事情莫过于自满于现状,拒绝学习和改变。世界在不断变化,行业的趋势、技术的革新都在要求我们与时俱进。如果你总觉得自己的方法最优,或者害怕尝试新事物,那就很容易被淘汰。与其等待机会找上门,不如主动出击,保持学习和探索的心态。加入优思学院,可以帮助你快速提升自己,与行业前沿
    优思学院 2025-01-09 15:48 102浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 97浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 99浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 81浏览
  • 车机导航有看没有懂?智能汽车语系在地化不可轻忽!随着智能汽车市场全球化的蓬勃发展,近年来不同国家地区的「Automotive Localization」(汽车在地化)布局成为兵家必争之地,同时也是车厂在各国当地市场非常关键的营销利器。汽车在地化过程中举足轻重的「汽车语系在地化」,则是透过智能汽车产品文字与服务内容的设计订制,以对应不同国家地区用户的使用习惯偏好,除了让当地车主更能清楚理解车辆功能,也能进一步提高品牌满意度。客户问题与难处某车厂客户预计在台湾市场推出新一代车款,却由于车机导航开发人
    百佳泰测试实验室 2025-01-09 17:47 21浏览
  • 在当前人工智能(AI)与物联网(IoT)的快速发展趋势下,各行各业的数字转型与自动化进程正以惊人的速度持续进行。如今企业在设计与营运技术系统时所面临的挑战不仅是技术本身,更包含硬件设施、第三方软件及配件等复杂的外部因素。然而这些系统往往讲究更精密的设计与高稳定性,哪怕是任何一个小小的问题,都可能对整体业务运作造成严重影响。 POS应用环境与客户需求以本次分享的客户个案为例,该客户是一家全球领先的信息技术服务与数字解决方案提供商,遭遇到一个由他们所开发的POS机(Point of Sal
    百佳泰测试实验室 2025-01-09 17:35 109浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 97浏览
  • 1月9日,在2025国际消费电子展览会(CES)期间,广和通发布集智能语音交互及翻译、4G/5G全球漫游、随身热点、智能娱乐、充电续航等功能于一体的AI Buddy(AI陪伴)产品及解决方案,创新AI智能终端新品类。AI Buddy是一款信用卡尺寸的掌中轻薄智能设备,为用户带来实时翻译、个性化AI语音交互助手、AI影像识别、多模型账户服务、漫游资费服务、快速入网注册等高品质体验。为丰富用户视觉、听觉的智能化体验,AI Buddy通过蓝牙、Wi-Fi可配套OWS耳机、智能眼镜、智能音箱、智能手环遥
    物吾悟小通 2025-01-09 18:21 25浏览
我要评论
14
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦